BUILDING 310 RETENTION TANKS CHARACTERIZATION REPORT

Prepared by C.M. Sholeen and D.C. Geraghty

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated by THE UNIVERSITY OF CHICAGO for the U.S. DEPARTMENT OF ENERGY under Contract W-31-109-Eng-38

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

- DISCLAIMER -

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62
Oak Ridge, TN 37831
Prices available from (423) 576-8401

Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

BUILDING 310 RETENTION TANKS CHARACTERIZATION REPORT

ARGONNE NATIONAL LABORATORY ARGONNE, ILLINOIS

Prepared by C. M. Sholeen D. C. Geraghty

Environment Safety and Health Division Health Physics Section Argonne National Laboratory Argonne, Il 60439

December 1996

BUILDING 310 RETENTION TANKS CHARACTERIZATION REPORT

ARGONNE NATIONAL LABORATORY ARGONNE, ILLINOIS

December 1996

Characterization Performed and Report Prepared by Health Physics Section Environment, Safety and Health Division Argonne National Laboratory

Site Preparation, Characterization and Report Team:

Charlotte Sholeen Dolores Geraghty

Nick Contos David Reilly Cindy Sullivan Sue Santarelli Michael O'Connor Joseph Cooney Willis Ray Dave Kuzma

Timothy Branch Mark DelRose Irving Vaughn Jim Gleason

Consultants:

Rudy Gebner Bill Helenberg Louis Bova

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
ACKNOWLEDGMENTS	xi
ABSTRACT	xii
I. OBJECTIVE	1
II. HISTORY OF THE RETENTION TANK FACILITY	1
III. CHARACTERIZATION METHODOLOGY	5
IV. SCHEDULE	6
V. QUALITY ASSURANCE	6
VI. SAMPLES AND MEASUREMENTS IDENTIFICATION SYSTEM	7
VII. RELEASE CRITERIA AND BACKGROUND VALUES	8
VIII. INSTRUMENTATION	10
IX. NUMBER OF MEASUREMENTS AND SAMPLES	10
X. RESULTS A. Surprises B. Lead in Tank Paint Results C. Asbestos Results D. Air Sample Results E. Room A-026A Radiological Survey F. Room A-038A Radiological Survey G. Room A-038A Water Problem H. Tunnel Radiological Survey I. Room A-050A Radiological Survey J. Room A-062A Radiological Survey K. Room A-068A Radiological Survey L. Internal Conditions of Tanks	21 26 37 41 43 53 57 59
M. Brick Breakout Wall	61

TABLE OF CONTENTS (Cont.)

XI.	SUMMARY OF RESULTS ABOVE BACKGROUND OR RELEASE CRITERIA	6
XII.	ESTIMATE OF INVENTORY OF ACTIVITY	6
	A. Tanks	6
	C. Pipes	6
XIII.	LESSONS LEARNED	6
XIV.	REFERENCES	6
APPE	NDIX A: Documentation of Samples	A-
APPE	NDIX B: Smear & Brick Sample Data	B-
APPE	NDIX C: Air Sample Data	C-
APPE	NDIX D: Analytical Results	D-:
APPE	NDIX E: Procedures & Confined Space Entry Permit for Tunnel	E-1
APPE	NDIX F: Instrument Calibration Records	F-1

LIST OF TABLES

ı	Sludge Sample Composition	4
2	Allowable Residual Surface Contamination Limits	8
3	Typical Background Concentrations in Soil and Sediments	9
4	Instruments Used for Characterization	11
5	Measurements & Samples Required for Retention Tank Characterization	12
6	Sludge Sample and Air Sample DAC Values	21
7	Background Ranges in Room A-026A	26
8	Background Ranges in Room A-038A	32
9	Water from Floor of A-038A	38
10	Estimated Volume of Water in Room A-038A	38
11	Gross α and β Activity in Water Samples \hdots	41
12	Tunnel Pipe Survey Results	42
13	Water from Radioactive Waste Transfer Line	43
14	Background Ranges in Room A-050A	47
15	Isotopic Analysis of Contamination	52
16	Background Ranges in Room A-062A	53
17	Background Ranges in Room A-068A	57
18	Retention Tank Sample dated 6/23/95	60
19	Retention Tanks; Internal Conditions	60
20	Inventory Estimate inside Tanks	63
21	Tank External Inventory Estimate	64
22	Inventory Estimate on Walls & Floors	65

LIST OF TABLES (Cont.)

23	Inventory Estimate in the Floor Mud	6
24	Pipe Inventory Estimate	6
25	Liquid from the Transfer Lines	6
A1	Building 310 Characterization Sample Labels	A-
B1	Smear Sample Data from Tennelec for 310 Retention Tanks	B-:
B2	Building 310 Smear Data logged on the DABRAS or NE	B-9
В3	Brick Sample Data from Tennelec for 310 Rétention Tanks	3-11
B4	Internal Tank Data form Building 310 Retention Tanks	3-12
C1	Air Sample Data from Tennelec for 310 Retention Tanks	C-3
D1	Documents Containing Analytical Results	D-3
F1	Background Data from Tennelec for 310 Retention Tanks	F-4
F2	Source Data from Tennelec for 310 Retention Tanks	F-5

LIST OF FIGURES

1	Building 310 Retention Tanks; Service Floor	2
2	Buildings 310 and 306 with Connecting Tunnels	3
3	NE Technology Model Electra with 100 cm ² Detector for Measuring αβγ Surface Contamination	13
4	Tennelec APC MII Smear Counting System	13
5	Dual Alpha Beta Radioactivity Assay System for smear counting	14
6	Ludlum Model 3 Energy Compensated GM	14
7	Eberline RO-20 Air Ionization Chamber	15
8	Eberline PRM-5-3 with PG-2 Scintillation Detector	15
9	Eberline Alpha Air Monitor	16
10	Retrospective Air Sampling System	16
11	Radon Gas Concentrations	19
12	Radon Daughter Concentrations	19
13	Airborne Alpha Particulate Spectra Collected 7/15	20
14	Low Energy Alpha Spectra Collected 7/15/1996	20
15	Retrospective Air Sample; Alpha Data	22
16	Retrospective Air Sample; Beta Data	22
17	Building 310 Retention Tanks; Room 026 Tank 8	23
18	Building 310 Retention Tanks; Room 026 Tank 9	24
19	Building 310 Retention Tanks; Room 026 Tank 10	25
20	Building 310 Retention Tanks; Room 026 Floor	27
21	Building 310 Retention Tanks; Room 026 South Wall	28

LIST OF FIGURES (Cont.)

22	Building 310 Retention Tanks; Room 038 Tank 5	29
23	Building 310 Retention Tanks; Room 038 Tank 6	30
24	Building 310 Retention Tanks; Room 038 Tank 7	31
25	Building 310 Retention Tanks; Room 038 North Wall	33
26	Building 310 Retention Tanks; Room 038 West Wall	34
27	Building 310 Retention Tanks; Room 038 South Wall	35
28	Building 310 Retention Tanks; Room 038 Ceiling	36
29	Entrance to Tunnel from Building 306	40
30	Building 310 Retention Tanks; Room 050 Tank 2	44
31	Building 310 Retention Tanks; Room 050 Tank 3	45
32	Building 310 Retention Tanks; Room 050 Tank 4	46
33	Building 310 Retention Tanks; Room 050 Floor	48
34	Building 310 Retention Tanks; Room 050 Floor under Tar Paper	49
35	Building 310 Retention Tanks; Room 050 North Wall	50
36	Building 310 Retention Tanks; Room 050 West Wall	51
37	Building 310 Retention Tanks; Room 062 Tank 1	54
38	Building 310 Retention Tanks; Room 062 Floor	55
39	Building 310 Retention Tanks; Room 062 West Wall	56
40	Building 310 Retention Tanks; Room 068 Floor	58
A1		A-3
C1	Airborne Alpha Particulate Spectra Collected 7/5/96	C-4
C2	Low Energy Alpha Spectrum Collected 7/5/1996	C-4

LIST OF FIGURES (Cont.)

C3	Airborne Alpha Particulate Spectra Collected 7/8/96	C-5
C4	Low Energy Alpha Spectrum Collected 7/8/1996	C-5
C5	Airborne Alpha Particulate Spectra Collected 7/9/96	C-6
C6	Low Energy Alpha Spectrum Collected 7/9/96	C-6
C7	Airborne Alpha Particulate Spectra Collected 7/12/96	C-7
C8	Low Energy Alpha Spectrum Collected 7/12/1996	C-7
C9	Airborne Alpha Particulate Spectra Collected 7/15/96	C-8
C10	Low Energy Alpha Spectrum Collected 7/15/1996	C-8
C11	Airborne Alpha Particulate Spectra Collected 7/18/96	C-9
C12	Low Energy Alpha Spectrum Collected 7/18/1996	C-9
C13	Airborne Alpha Particulate Spectra Collected 7/19/96	C-10
C14	Low Energy Alpha Spectrum Collected 7/19/1996	C-10
C15	Airborne Alpha Particulate Spectra Collected 7/22/96	C-11
C16	Low Energy Alpha Spectrum Collected 7/22/1996	C-11
C17	Airborne Alpha Particulate Spectra Collected 7/25/96	C-12
C18	Low Energy Alpha Spectrum Collected 7/25/1996	C-12
C19	Airborne Alpha Particulate Spectra Collected 7/26/96	C-13
C20	Low Energy Alpha Spectrum Collected 7/26/1996	C-13
C21	Airborne Alpha Particulate Spectra Collected 8/1/96	C-14
C22	Low Energy Alpha Spectrum Collected 8/1/1996	C-14
C23	Airborne Alpha Particulate Spectra Collected 8/2/96	C-15

LIST OF FIGURES (Cont.)

C25	Airborne Alpha Particulate Spectra Collected 8/5/96	C-16
C26	Low Energy Alpha Spectrum Collected 8/5/1996	C-16
F1	Calibration Check Data for the Tennelec System	F-6
F2	Background Check Data for the Tennelec System	F-6

ACKNOWLEDGMENTS

This characterization was simplified because of the previous characterization work done in August 1994 by George Mosho of ESH-HP.

Special thanks to Cindy Sullivan (ESH-HP) who compiled the final the document. We especially appreciate her patience and sense of humor in handling the report's numerous changes and additions.

Thanks to Mike O'Connor who crawled through the tunnel in tyveks to perform the survey.

Thanks to all the WMO mechanics, Irving Vaughn, Dave Kuzma, and Jim Gleason, and the HP technicians, Mike O'Connor and Tim Branch, and to Dolores Geraghty who persisted in accomplishing the work in spite of the mosquitos that were breeding in the water on the floor of room A-038A.

Thanks also to Sue Santarelli and Willis Ray who cooperated in scheduling the WMO efforts to clean the rubble from room A-068A; pump the water from the floor of room A-038A; and sample the transfer lines in Building 306, room B007.

This effort is supported by Department of Energy-EM 40 in conjunction with the Technology Development Division of Argonne National Laboratory.

ABSTRACT

The Health Physics Section of ANL performed a characterization of the Building 310 Service Floor Retention Tank Facility during the months of July and August, 1996. The characterization included measurements for radioactivity, air sampling for airborne particles and sampling to determine the presence and quantity of hazardous materials requiring remediation. Copies of previous lead and asbestos sampling information was obtained from ESH-IH. The facility consists of ten retention tanks located in rooms, A-062A, A-050A, A-038A, A-026A, and an entry room A-068A which contained miscellaneous pumps and other scrap material.

Significant contamination was found in each room except room A-068A which had two contaminated spots on the floor and a discarded contaminated pump.

Room A-062A: This room had the highest radiation background. Therefore, beta readings reflected the background readings. The floor, west wall, and the exterior of tank #1 had areas of alpha contamination. The piping leading from the tank had elevated gamma readings. There were low levels of smearable contamination on the west wall.

Room A-050A: Alpha and Beta contamination is wide spread on the floor, west wall and the lower portion of the north wall. An area near the electrical box on the west wall had alpha and beta loose contamination. The exterior of tank #4 also had contaminated areas. The grate in front of tank #4 was contaminated. The piping leading from tanks #2, 3, and 4 had elevated gamma readings. There were low levels of smearable contamination on tank #4 and on the tar paper that is glued to the floor.

Room A-038A: There is a considerable amount of alpha contamination on tanks 5, 6, and 7 with a contaminated strip approximately two feet wide on the middle of the west side of tank 5 that is up to 375K dis/min - 100 cm² α . Also, a small area smear of this area had loose contamination of 8,400 dis/min α , and 5,700 dis/min β . The north wall also had a large area of alpha contamination. The piping along the ceiling and ductwork by this wall seems to have leaked. The pipe joint along the ductwork was 27.5K dis/min α , 1,004K dis/min β - 100 cm² direct and 12,700 \pm 300 dis/min α , 11,300 \pm 200 dis/min β on smears. Contamination was also noted on the west wall, and in samples of tar paper from the floor. The grate in front of tanks 6 and 7 is contaminated. The piping leading from tanks #5, 6, and 7 had elevated gamma readings. Water comes into this room through the tunnel.

Room A-026A: Contamination was noted on the cover plates of tanks 8 and 10 and also on the exterior of the tanks. The large area smear of tank 9 indicated loose activity. One area on the south wall and three areas on the floor were contaminated. There were low levels of loose activity on the tanks, pipes, south wall, east wall, and floor. Water seeps into this room at the bottom of the brick wall.

Tunnel from 306 to 310: The east pipe of the tunnel from the 310 side had elevated gamma readings. There were low levels of smearable contamination on the piping in the tunnel but not on the tunnel walls.

Air Samples: 137 Cs and 60 Co was seen on the gamma spectrum of fifteen air samples. Elevated alpha activities were measured during two of the sampling periods. The DAC values are <2%.

The internal and external activities associated with each room are summarized below.

Summary of Activity by Room (µCi)

Location	A-026A	A-038A	A-050A	A-062A	A-068A
Internal Tank α	26,000	240	4,000	3,800	NA
Internal Tank B	75,000	670	11,000	11,000	NA
External Tank α	0.15	25	0.24	0.014	NA
External Tank β	3.9	25	0.29	2.0	NA
Walls & Floors α	2.0	2.6	94	0.87	0.009
Walls & Floors β	63	68	110	43	0.28
Pipes α	0.003	0.24	0.022	0.007	NA
Pipes β	0.11	0.80	0.45	0.14	NA

The activities associated with individual items that either services all rooms or are unique to one of the rooms are summarized below.

Activity of Other Items

Item	μСі α	μСі β
Mud from A-038A floor	3.4	24
Transfer line in A-038A	0.009	0.15
Lab drain	0.038	1.4
Tunnel under paved area	0.34	12
Tunnel in Bldg 306	0.077	36
Liquid in transfer lines	3.9	72

Name - and have they topical paint. There were her layer of the

BUILDING 310 RETENTION TANKS CHARACTERIZATION REPORT

I. OBJECTIVE

The two primary goals to be achieved by a characterization are:

- Collection of enough data on the amount of contamination present to allow realistic cost estimates for radioactive and otherwise contaminated waste disposal.
- Identification of the extent of contaminated materials, areas, and equipment, to allow optimum task planning for the eventual Decontamination and Decommissioning (D&D) process.

This facility was the subject of a previous sampling and preliminary characterization effort. Data from those studies helped to define the approximate condition so that an appropriate Field Characterization Plan could be designed. Lead was sampled in 1994 and a thorough sampling of asbestos had been performed by ESH-IH prior to the start of the characterization. Also, the previous data from the composite sludge sample inside the tanks will suffice to meet the data requirements of the Characterization Plan dated June 1996, reducing work to be done.

The 310 Retention Tank Facility has been slated for a D&D Project leading to complete decontamination and full release for unrestricted use. Thus, the identification of radioactivity levels above free release levels is critical for accurate D&D planning.

II. HISTORY OF THE RETENTION TANK FACILITY

The Building 310 service floor retention tank facility was originally installed over 30 years ago. The facility consists of three rooms containing three tanks each, and a larger room containing one tank, for a total of ten tanks (see Figure 1). Access to the tanks is via a metal grate walkway about one meter above the floor in each room. Pipe tunnels connect the tanks to the Building 306 service floor "tank farm" (see Figure 2). One pipe tunnel runs under the paved area south of 310 to a space under the 306 north dock, room B007. This tunnel was sealed at the 306 end; in Building 310, access is blocked by a steel grate. The door to the entrance to room A-068A has a sign that reads "EBR-II Storage Retention Tank Area".

December 10, 1990 Page 2

FIGURE 2 Buildings 310 and 306 with Connecting Tunnels

The primary purpose of the tanks was to act as excess storage capacity for the Building 306 tanks when necessary. The operator of the 306 liquid waste system recalls that the 310 tanks were infrequently used for this purpose. The tanks were reportedly isolated from the 306 system about 15 years ago when it was decided that the excess capacity was no longer necessary. The tanks have remained dormant since that date. Third party information indicates that waste water was also pumped from tanks on trucks in the paved area into the retention tanks. A hose would have been used to transfer the waste. At the beginning of the characterization, there was a black hose in room A-038A.

Ventilation flow through the three rooms is poor but adequate to maintain a breathable atmosphere. Several pipe openings to the outside exist along the south upper wall of each room. There is also a small door with ventilation louvers in each room. After these doors were opened, the musty odor in the rooms disappeared. The middle room, A-038A, is continuously flooded by groundwater to a maximum of about 75 cm (30 inches), and the tank supports and metal grate steps have corroded excessively. The black hose was eventually used to pump the standing water from the floor of the room to one of the active building retention tanks in room A-067. This water was tested according to ANL procedures before it was released. The remaining rooms show no extensive signs of water damage.

A composite sludge sample from the four tanks indicated in Figure 1, was obtained on 7/23/95 during the preliminary characterization effort. The sample shows minimal levels of hazardous chemicals (below the RCRA levels defined in 40 CFR 261), but significant levels of radioactive contaminants, that are listed in Table 1. A copy of the sampling results from TAM Thermo Analytical Inc., can be found in Appendix D (page D-12) with letters from J. Demski (page D-15) and R. Rose (page D-16).

TABLE 1 Sludge Sample Composition

β Radionuclide	Activity (pCi/g)	α Radionuclide	Activity (pCi/g)
¹³⁷ Cs	107,200	²³⁸ U	23,270
^{234m} Pa	6,173	²³⁴ U	16,560
²³⁴ Th	3,994	²³⁵ U	2,276
⁶⁰ Co	2,369	²³⁹ Pu	65
⁴⁰ K	171	²⁴¹ Am	11
⁹⁰ Sr	88	²³⁸ Pu	3
β Sum	119,995.0	α Sum	42,185.0

III. CHARACTERIZATION METHODOLOGY

The general approach of the characterization can be summarized by the following steps:

- took samples for airborne radon daughters and airborne radioactive particulates,
- thoroughly alpha and beta scanned the floor, the brick wall and the other
 walls up to one meter for each room to look for localized regions or spots
 with elevated radiation levels.
- gamma scanned the tanks and pipes to measure maximum radiation exposure rates.
- collected or reviewed available data for hazardous constituent content in tank sludges and standing water,
- randomly selected locations at which smear samples were taken on walls, floors, ceilings, pipes and tanks. Recorded X, Y coordinates of each location (if a spot or area with elevated radiation levels was identified during the general gamma scan, that location was selected for additional smear sampling),
- at each selected location large area smears or $100~\text{cm}^2$ smears were taken to determine removable α and $\beta\gamma$ dpm/ $100~\text{cm}^2$. Analyze some elevated smears by gamma spectrometry,
- took smear samples from inside the tanks to determine removable α and $\beta\gamma$ activities,
- · tested paint on the tanks and on the walls for lead,

Samples were pre-numbered and labels for the sample envelopes or plastic bags were pre-printed. An example of a sheet of sample labels is given in Appendix A. The samples were checked off when completed and also when analyzed for gross α and β activity. Full lists of sample results are given in Appendix B for smear and brick samples; Appendix C for air samples; and Appendix D for samples sent to Industrial Hygiene (ESH-IH), Bioassay (ESH-DA), Heritage Environmental Services, TMA Thermo Analytical Inc., or the Control Lab (ESH-DA) for analysis.

Elevated field measurements were recorded on special maps. Maps of field data with elevated readings are included in the body of the report as they are discussed for each room.

Special procedures were prepared for the tunnel survey. The procedure is given in Appendix E along with the Confined Pace Entry Permit.

IV. SCHEDULE

The Health Physics Section of the ANL-E Environment Safety and Health Division began characterization field work on June 26, 1996 and completed field work on August 13, 1996. The water in room A-038A was sampled on June 25, 1996. Analyses of the water samples were completed on July 22, 1996. Water was initially pumped from the room on July 25 and 26 into an active retention tank in room A-067. The active retention tank was sampled by the Control Lab according to the ANL retention tank requirements before the water was released to the site drains. The analysis results are included in Appendix D (pages D-17 through D-20), retention tank sample no's 119990 through 19996. A large fan was used in an attempt to dry the floor on July 27 and 28. However, on Monday July 29, there was still water on the floor. The sump pump was used but even this did not dry the floor completely.

V. QUALITY ASSURANCE

The Quality of the characterization process was assured by the following actions:

- All work was performed in compliance to the QA plans of the ESH Division, and the Health Physics Section.
- Calibration and Operational Checks all instrumentation used in the characterization surveys were checked daily for proper operation. A log was maintained for operational checks. All radiation detection instrumentation were calibrated with NIST traceable radioactive sources. Instruments' calibration records are given in Appendix F.
- Data Protection all data stored on computers were backed up daily.
- Special attention was given to contamination control during sampling of
 potentially contaminated materials to assure that the characterization process
 did not alter or bias the true condition of the facility.

VI. SAMPLES AND MEASUREMENTS IDENTIFICATION SYSTEM

Samples were identified by a five element code:

Type sample Element 1
Room no. or Tunnel Element 2
Location Element 3
Sequential Number Element 4
X, Y coordinate Element 5

Following are the notations used for each element.

Type of sample

SA Smear 100 cm² smears LA Smear >100 cm² smears

internal smear > 100 cm² smears inside pipe flange at the tank

brick scrapings from a brick knock out wall

air retrospective air samples

Room No. or Area

A-026A Tank Room shown in Figure 1

Tunnel # 1 pipe tunnel from Bldg 310 to Bldg 306 shown in Figure 2 pipe tunnel from Bldg 306, room B-007 to the tank farm

Location

North Wall South Wall East Wall West Wall

Floor Ceiling

Tank #

Pipe # - pipes at the top of tank #

X,Y Coordinate (all distances in feet)

- For walls, the origin 0,0 is at the lower left corner
- For floors the origin 0,0 is at the southwest corner
- For the tanks a letter designation indicates the side of the tank that was smeared, the origin 0.0 i.e. at the lower left edge
- For the tank pipes the origin 0,0 is at the floor and left side of the tank when facing the south wall.
- For the overhead pipes in room A-038A the origin 0,0 is at the floor and the west wall

VII. RELEASE CRITERIA AND BACKGROUND VALUES

To interpret the quantitative results of the characterization, the data were compared to currently accepted release criteria and background values typically found in the natural environment.

Following are the principal release and background values:

Surface Contamination Release Criteria- Removable and total surface contamination limits (for unrestricted release of nonporous materials) used by the USNRC and by DOE are given in USNRC Regulatory Guide 1.86 (reference 1) and are listed in the following Table 2. The Regulatory Guide 1.86 values were adopted by DOE and are also listed in DOE Order 5400.5A (reference 2) and the draft rule 10 CFR 834 (reference 3).

Lead in paint release criteria - paint is considered to be lead-containing if it has greater than 0.5% lead by weight.

Background radiation exposure rate - the radiation exposure rate inside most buildings at ANL-E is typically 10-15 μ R/h. This value is consistent with the natural background exposure rate in the midwestern USA (reference 4). The environmental penetrating radiation from areas surrounding ANL were 82 \pm 10 mrem/y (9.4 \pm 1.1 μ R/h); from the ANL boundaries the penetrating radiation ranged from 67 mrem/y (7.7 μ R/h) to 95 mrem/y (10.9 μ R/h) (from reference 8).

Background radioactivity in soil - the activity concentration in soil is predominantly due to naturally occurring radionuclides in the uranium and thorium series. Some non natural radionuclides found in soil are due to atmospheric fallout. Typical concentrations in soil of the major natural and fallout radionuclides are listed in Table 3 from reference 8.

TABLE 2 Allowable Residual Surface Contamination Limits (dpm/100 cm²)

Total (fixed and removable) Radionuclides	Average	Maximum	Removable
Transuranics, I-125, I-129, Ra-226, Ac-227, Ra-228, Th-228, Th-230, Pa-231	100	300	20
Th-Natural, Sr-90, I-126, I-131, I-133, Ra-233, Ra-224, U-232, Th-232	1,000	3,000	200
U-Natural, U-235, U-238, and associated decay product, alpha emitters	5,000	15,000	1,000
Beta-gamma emitters (except Sr-90)	5,000	15,000	1,000

TABLE 3 Typical Background Concentrations in Soil and Sediments

	Soil Average		Bottom Sediments Average				
Radionuclide	ANL Perimeter	Off-Site	ANL Perimeter	Off-Site			
Start Land	Activity pCi/g						
	Activity perig						
⁴⁰ K	18.62 ± 2.39	19.03 ± 7.01	8.28 ± 3.16	11.09 ± 11.53			
¹³⁷ Cs	0.49 ± 0.40	0.33 ± 0.31	0.36 ± 0.19	0.13 ± 0.35			
²²⁶ Ra	1.07 ± 0.39	1.22 ± 0.88	0.48 ± 0.16	0.80 ± 1.03			
²²⁸ Th	1.11 ± 0.32	1.10 ± 0.44	0.38 ± 0.15	0.65 ± 0.83			
²³² Th	0.86 ± 0.17	0.81 ± 0.29	0.30 ± 0.09	0.52 ± 0.60			
	Activity fCi/g						
²³⁸ Pu	0.5 ± 0.2	0.3 ± 0.1	0.7 ± 0.7	0.1 ± 0.4			
²³⁹ Pu	13.2 ± 2.7	8.7 ± 2.3	10.3 ± 6.8	3.7 ± 9.0			
²⁴¹ Am	4.5 + 0.9	3.4 ± 1.0	4.0 ± 2.7	1.9 ± 2.7			

 $pCi = 10^{-12} Ci$ $fCi = 10^{-15} Ci$

Asbestos release criteria - a material (e.g., insulation, pipe joint compound, floor tile) is considered asbestos-containing if it contains greater than 1% asbestos by weight.

Hazardous material release criteria - a RCRA (Resource Conservation Recovery Act) hazardous waste is defined as waste which meets one of the following two criteria:

- 1. it exhibits the 40 CFR 261.20 (reference 7) specific properties of
 - ignitability
 - corrosivity
 - reactivity
 - · toxicity, and
- 2. it is listed in 40 CFR 265 (reference 7) as a RCRA hazardous waste, and it exceeds the specified concentration limits.

Airborne radioactivity limits - annual average concentration guidelines for the workplace are listed as derived air concentrations (DAC) in the DOE rule 10 CFR 835 (reference 5). However, the concentration of non naturally occurring radionuclides is expected to be non detectable in non radiological areas. The DAC values (reference 6) are listed in Table 6 for the radionuclides identified in the tank sludge sample, or on the air samples.

Retention tanks radioactivity release limits - at ANL-E, laboratory waste water is collected in retention tanks and is sampled and analyzed for alpha and beta radioactivity before being released to the laboratory waste water treatment plant. The release limits are ten times the drinking water standard: 0.03 pCi/ml (0.067 dpm/ml, the derived concentration guide for ²³⁹Pu) for alpha activity, and 1.0 pCi/ml (2.22 dpm/ml, the derived concentration guide for ⁹⁰Sr) for beta activity. Liquid waste exceeding these limits is processed to remove the contamination, normally by evaporation, and the residue disposed of as radioactive waste.

VIII. INSTRUMENTATION

Instrumentation was chosen to assure that the MDAs for the selected instrument/technique was less than the release criteria. A listing of the principal instruments used and their typical MDAs is given in Table 4. Photographs of the principal instruments used for the characterization are shown in Figures 3 through 10.

IX. NUMBER OF MEASUREMENTS AND SAMPLES

A listing of the type and number of measurements performed and samples collected during the characterization is given in Table 5.

X. RESULTS

A. Surprises

The characterization identified the following unexpected conditions:

1. The radiation levels from the tanks were too high to perform a meaningful γ scan with the PG-2 detector.

TABLE 4 Instruments Used for Characterization

Purpose	Instrument	Detector Description	Measurement Units	Typical Characteristics	Typical MDA*
Total Surface (α)	NE Technology, Ltd. ELECTRA	Dual Scintillator 100 cm ² sampling area 0.5 mg/cm ²	cpm	21% ²⁴¹ Am efficiency, 30 sec residence time, ≤7 cpm background	98 dpm
Total Surface (β-γ)	NE Technology, Ltd. ELECTRA	Dual Scintillator 100 cm ² sampling area ~ 6 mg/cm ²	cpm	29% ⁹⁰ Sr-Y efficiency, 30 sec residence time, ≤400 cpm background	410 dpm
Removable Surface (α)	Tennelec APC	Gas Proportional 5 cm dia. 0.1 mg/cm ²	cpm	30% ²⁴¹ Am efficiency, 2 min count time, ≤1 cpm background	17 dpm
Removable Surface (β-γ)	Tennelec APC	Gas Proportional 5 cm dia. 0.1 mg/cm ²	cpm	42% ⁹⁰ Sr-Y efficiency, 2 min count time, ≤ 40 cpm background	86 dpm
Removable Surface (α)	DABRAS	Gas Proportional 200 cm ² 0.4 mg/cm ²	cpm	27% ²⁴¹ Am efficiency, 2 min count time, ≤2 cpm background	18 dpm
Removable Surface (β-γ)	DABRAS	Gas Proportional 200 cm ² 0.4 mg/cm ²	cpm	49% ⁹⁰ Sr-Y efficiency, 2 min count time, ≤270 cpm background	86 dpm
Exposure Rate (γ)	Ludlum Model 3	Energy Compensated GM Side Window	mR/h	2 sec residence time 12 cpm (i.e., 0.01 mR/h) Bkgd	0.1 mR/h net
Exposure Rate (γ)	Eberline RO-20	Air Ionization Chamber 220 cc interleaved	mR/h; R/h	5 sec response time, ≤0.1 mR/h background	0.1 mR/h net
Find Elevated x-γ	Eberline PRM 5-3 with PG-2 detector	5 cm diameter x 2 mm thick NaI (Tl)	cpm	2 sec residence time 500 cpm background	1500 cpm net
Continuous Air Monitor	Eberline Alpha Air Monitor Alpha 6A	Silicon diffused Junction 25 mm dia.	pCi/L & WL	45% ²³⁹ Pu efficiency 2Pi, gross count 1 hour integrate	0.05 mWl .05 pCi/L

^{*} Note: The typical MDA for the NE Technology, Ltd. ELECTRA, the Ludlum Model 3 and the Eberline PRM 5-3 with a PG-2 detector is based upon the use of audio output to enhance the discernment of recordable measurements.

TABLE 5 Measurements & Samples Required for Retention Tank Characterization

Item	Total Number	
Type of measurement		
General α and β scan	24	
General exposure rate	20	
Spot direct αβγ	282	
Spot exposure rate	40	
Spot direct γ	12	
Type of samples collected		
Smears	289	
Tank paint scrapings	10	
Brick wall scrapings	13	
Air	19	
Sludge (Composite from four tanks)	1	
Water	10	
Type of sample analyses		
Gross αβγ	395	
γ spectroscopy	6	
α spectroscopy	1	
Lead	10	
Hazardous materials	2	
PCB	1	

FIGURE 3 NE Technology Model Electra with 100 cm^2 Detector for Measuring $\alpha\beta\gamma$ Surface Contamination

FIGURE 4 Tennelec APC MII Smear Counting System

FIGURE 5 Dual Alpha Beta Radioactivity Assay System (DABRAS) for smear counting

FIGURE 6 Ludlum Model 3 Energy Compensated GM

FIGURE 7 Eberline RO-20 Air Ionization Chamber

FIGURE 8 Eberline PRM-5-3 with PG-2 Scintillation Detector (2" x 2mm thick NaI detector)

FIGURE 9 Eberline Alpha Air Monitor

FIGURE 10 Retrospective Air Sampling System

- 2. Tar paper was found on floors and lower walls in rooms A-050A and A-038A.
- 3. Direct surface contamination was found on floors and/or walls in rooms A-062A, A-050A, A-038A and A-026A.
- 4. Fixed and loose contamination was found on the outside of tanks #1, #3, #4, #5, #6, #7, #8, #9, and #10.
- 5. Because of the close quarters in the rooms, the floor monitor was not used. Therefore only room A-068A had the debris vacuumed from the floor.
- 6. Direct and loose contamination on pipes in A-038A suggest a leaking pipe.
- 7. Airborne β contamination, ¹³⁷Cs and ⁶⁰Co (see Table 15).

B. Lead in Tank Paint Results

Paint was removed from tanks in rooms A-026A, A-038A, A-050A and A-062A and analyzed for lead. The paint did not contain lead. The memos from ESH-IH documenting the inspection results are contained in Appendix D (from M. Bonkalski dated January 9, 1995 [page D-21] and from D.R. Lucas dated August 21, 1996 [page D-23]). The paint on the walls of rooms A-026A, A-038A and A-050A was sampled in September. The memo is in Appendix D dated September 26, 1996 (page D-34).

C. Asbestos Results

The elbows and some of the straight runs of the pipes are covered with asbestos containing insulation. The memo from ESH-IH documenting the inspection results is contained in Appendix D (from M. Bonkalski, dated January 9, 1995) along with the HSA Database Table for Building 310 documenting the asbestos study that was performed in the building (pages D-24 through D-33).

D. Air Sample Results

Two types of air samples were collected, a continuous sample in room A-026A for naturally occurring radon, ²²⁰Rn and ²²²Rn; and grab samples in rooms A-026A, A-038A, A-050A, and A-062A for long lived radioactivity.

For the continuous sample, both the alpha energy spectrum and the air concentrations were stored and plotted (see Figures 11 through 14). The spectrum is typical for $^{220}\mathrm{Rn}$ and $^{222}\mathrm{Rn}$ daughter products. Both the $^{222}\mathrm{Rn}$ concentration and working level exhibit strong diurnal variations (see Figures 11 and 12). The $^{222}\mathrm{Rn}$ concentrations indicate that the yearly average will be below the residentially permitted yearly average concentration of 4 pCi/l. The $^{220}\mathrm{Rn}$ working level exhibits much weaker diurnal variations. Examinations of the α spectrum from the Alpha 6 Continuous Air Monitor reveled oscillations on the low energy tail of the 6 MeV peak from $^{218}\mathrm{Po}$ and $^{212}\mathrm{Bi}$, decay daughters of $^{222}\mathrm{Rn}$ and $^{220}\mathrm{Rn}$ respectively (see Figures 13 and 14). Long-lived radionuclides could not be distinguished. On July 9, 1996 the air monitor was turned off for several hours; then turned on for a short collection time, before the spectrum was stored. The predominant radionuclides in the alpha spectrum were the thoron daughters $^{212}\mathrm{Bi}$ at 6 MeV and $^{212}\mathrm{Po}$ at 8.8 MeV. A copy of the alpha spectrum is presented in Appendix C (C5 and C6).

The grab samples were changed at least once each week during the characterization effort from June 26 through July 26. The flow rate of each sample was 40 l/min. The sample collection times ranged from 3 days to 7 days. The initial counts after at least five days indicate low levels of activity, up to 7.6 \pm 3.7 dis/min α and 43 \pm 10 dis/min β . The air samples are tabulated and presented in Appendix C, Table C1. The air samples were recounted on a low background detector 26 to 47 days after removal. With the low background counter, there was between 3.2 and 8.6 dis/min α and between 16 and 38 dis/min β on the filters. The data sheets are in Appendix D (Tennelec LB4000 count started August 19, 1996 and August 21, 1996 [pages D-35] through D-39]). Although these levels are low <2% of a DAC for ²³⁹Pu and <0.02% of a DAC for ⁹⁰Sr (see Table 6 for DAC values), they are above background levels. Fifteen air filters from the first four sampling periods were analyzed by y spectroscopy as a single sample. The major beta emitters are ⁷Be (84.6%) and ²¹⁰Pb (13.9%), naturally occurring radionuclides. ⁷Be is a spallation product from the interaction of cosmic rays with ¹⁴N. ²¹⁰Pb is the long-lived daughter of ²²²Rn. However, there were also low levels of ¹³⁷Cs (1.4% of the gamma emitting betas) and 60 Co (0.2% of the gamma emitting betas). The analysis results are presented in Table 15 and the original data sheets are presented in Appendix D (310 retention room AFS #194, 195, 197 - 209 [page D-40]). The major alpha emitter could be ²¹⁰Po, a ²¹⁰Pb daughter since no ²⁴¹Am was seen in the gamma spectra. The only way to determine the actual alpha emitters is by ashing the sample and measuring the alpha spectra.

Depending on the dust loading, the alpha efficiency is between 5% and 35%; for calculation of the activities on the air samples, a 25% α efficiency was used. Depending on the radionuclide collected on the air filter, the beta efficiency is between 20% for ^{14}C and 50% for ^{90}Sr ; for calculation of the activities on the air samples, a 40% β efficiency was used. The alpha DAC value of 5 dpm/m³ for ^{238}Pu , ^{239}Pu or ^{241}Am (see Table 6) was used to calculate %DAC values. For calculational purposes, it was assumed that all of the α activity was due to transuranic

FIGURE 11 Radon Gas Concentrations

FIGURE 12 Radon Daughter Concentrations

FIGURE 13 Airborne Alpha Particulate Spectra Collected 7/15

FIGURE 14 Low Energy Alpha Spectra Collected 7/15/1996

TABLE 6 Sludge Sample and Air Sample DAC Values

β Radionuclide	DAC dpm/m ³	α Radionuclide	DAC dpm/m ³
¹³⁷ Cs	1 x 10 ⁵	²³⁸ U	40
^{234m} Pa	6 x 10 ⁶	²³⁴ U	40
²³⁴ Th	1 x 10 ⁵	²³⁵ U	40
⁶⁰ Co	3×10^4	²³⁹ Pu	5
⁴⁰ K	4 x 10 ⁵	²⁴¹ Am	5
⁹⁰ Sr	4×10^{3}	²³⁸ Pu	5
⁷ Be	2 x 10 ⁷	²¹⁰ Po	600
²¹⁰ Pb	240		

radionuclides. The beta DAC value of 4,000 dpm/m³ for 90 Sr was used to calculate %DAC values. If 240 dpm/m³ (the DAC value for 210 Pb) was used to calculate % DAC for the β emitters, the maximum value would be < 0.2%. For calculational purposes, it was assumed that all of the β activity was due to 90 Sr. Graphs of the %DAC values for the air samples are plotted for each room as a function of the removal date in Figures 15 and 16. According to the ESH Manual, Chapter 5-02, section 235, if the airborne concentrations is >10% of any DAC value, the area shall be posted with a sign that reads "CAUTION AIRBORNE RADIOACTIVE AREA" and controlled to reduce the potential for internal exposure.

Most of the characterization efforts in rooms A-026A, A-050A, A-062A and A-068A were conducted between July 9 and July 12. This corresponds to the elevated concentrations of alpha radionuclides in the air of room A-050 and A-062A. Between July 19 and July 26, the tar paper on the floor of A-050A was smeared, brick samples were taken from the south wall of all four rooms, the inside of the tanks were smeared and the contaminated spots were smeared. Elevated airborne alpha activity was noted during this time. There were no noteworthy increases in the airborne beta activities.

E. Room A-026A Radiological Survey

The north, east and west wall of this room are painted from the grate to a height of \sim 5 feet. The south wall, except for the portion that is constructed of bricks, is also painted from \sim 3 feet to \sim 5 feet. The walls under the paint were not checked for either direct alpha or loose alpha and beta contamination. The direct exposure rates at the bottom of tanks 8, 9, and 10 range from 0.2 mR/h to 0.6 mR/h (see Figures 17 through 19). On tank 8 there is one location with direct

FIGURE 15 Retrospective Air Sample; Alpha Data

FIGURE 16 Retrospective Air Sample; Beta Data

dis/min 100cm² NE ELECTRA dis/min 100cm² NE ELECTRA mR/h RO-20

WEST

0.5 γ

FIGURE 17 Building 310 Retention Tanks; Room 026 Tank 8

0.5 γ WEST SOUTH 0.3 γ

dis/min 100cm² NE ELECTRA dis/min 100cm² NE ELECTRA mR/hr RO-20

0.5 γ WEST 90 α 6890 β SOUTH 0.5 γ

dis/min 100cm² NE ELECTRA dis/min 100cm² NE ELECTRA mR/h RO-20

FIGURE 19 Building 310 Retention Tanks; Room 026 Tank 10

 α activity of 2,500 dis/min-100 cm²; the associated β activity is 66.3k dis/min-100 cm². On tank 10 there are three locations with direct α activity up to 400 dis/min-100 cm²; the associated β activity is up to 8,700 dis/min-100 cm². There are also low levels of loose activity on the outside of the tanks and pipes, up to 28 \pm 15 dis/min α and 103 \pm 28 dis/min β from a smear of the entire surface of tank 9. The smear results are tabulated in Appendix B, Table B1.

Because of the contamination in the bottom of the tanks, direct surveys for β or γ contamination on the floor and walls was difficult. From Table 7 below, the level of activity that could be present and not detected is recorded. However, some contamination was detected above the background levels on the floor and south wall (see Figures 20 and 21). The direct activity was up to 1,900 dis/min α and 59.3k dis/min β using a 100 cm² detector. There were also low levels of loose activity, up to 32 \pm 16 dis/min α and 105 \pm 28 dis/min β on 100 cm² smears.

During the survey of this room, the walls and floor were dry. After a heavy rain storm on July 17, water was observed still seeping into the room on July 22 along the south wall at the edge where the brick wall and the concrete wall meet (see Figure 21). There was also water on the floor and around the sump pump. The smear of the two sump pumps indicated no detectable loose activity.

F. Room A-038A Radiological Survey

The north, east and west walls of this room are painted from the grate to a height of ~ 5 feet. The south wall, except for the portion that is constructed of bricks, is also painted from ~ 3 feet to ~ 5 feet. The walls under the paint were not checked for either direct alpha or loose alpha and beta contamination. This room measures 19 feet 10 inches north to south and 29 feet 10 inches east to west. The direct exposure rates at the bottom of tanks 5, 6, and 7 range from 0.1 mR/h to 1.0 mR/h (see Figures 22 through 24). On tank 5 there were three spots and a large area with

TABLE 7 Background Ranges in Room A-026A

	ΝΕ α	dis/min	NE β dis/min		
Location	min	max	min	max	
Ceiling	0	0	6,000	9 k	
East Wall	0	27	8,479	21 k	
Floor	0	-0	3,000	11.3 k	
North Wall	0	44.5	5,000	18.6 k	
South Wall	0	32	4,000	10.8 k	
West Wall	0	0	3,000	12 k	

FIGURE 20 Building 310 Retention Tanks; Room 026 Floor

FIGURE 21 Building 310 Retention Tanks; Room 026 South Wall

December 10, 1996 Page 28

FIGURE 22 Building 310 Retention Tanks; Room 038 Tank 5

FIGURE 23 Building 310 Retention Tanks; Room 038 Tank 6

FIGURE 24 Building 310 Retention Tanks; Room 038 Tank 7

direct α activity up to 375k dis/min-100 cm²; the associated β activity is 150k dis/min-100 cm². On tank 6 there were five spots and a large area with direct α activity up to 3.2k dis/min-100 cm²; the associated β activities are up to 37k dis/min-100 cm². On tank 7 there are seven locations with direct α activity up to 30k dis/min-100 cm²; the associated β activities are up to 48.5k dis/min-100 cm². There are also elevated levels of loose activity on the outside of the tanks and pipes, up to 8,437 \pm 260 dis/min α and 5,736 \pm 163 dis/min β . All the large area smears on the tanks and pipes indicated contamination. Smear 270 from tank 5 had ¹³⁷Cs and ²⁴¹Am activity as detected by gamma spectrometry (See Table 15). There were also non gamma emitting radionuclides that contributed > ½ of the activity, perhaps ²³⁹Pu and ⁹⁰Sr. The ²³⁹Pu/²⁴¹Am ratio in this smear is less than that in the composite tanks sludge sample. The smear results are tabulated in Appendix B tables B1and B2.

Because of the contamination in the bottom of the tanks, direct surveys for β or γ contamination on the floor and walls was difficult. From Table 8 below, the level of activity that could be present and not detected is recorded. However, some contamination was detected above the background levels on the north, west and south walls (see Figures 25 through 27). The direct activity on the walls was up to 7k dis/min α and 24k dis/min β using a 100 cm² detector. The left pipe from the tunnel had a direct reading of 32.6k dis/min β .

There was a large area of contamination on the north wall. There was also an open area at the top of the north wall which was inaccessible. Because of the appearance of the area and the levels of contamination on near-by surfaces, it is assumed to be contaminated. By the north wall and near tank 6, piping along the ductwork is contaminated with up to 1,004k dis/min β activity and 27.5k dis/min α activity (see Figure 28) as measured with a portable survey instrument. A smear, of the north wall and pipe had 7,758 \pm 249 dis/min α and 5,740 \pm 160 dis/min β . This smear number 271, had 137 Cs and 241 Am activity as detected by gamma spectrometry (see Table 15).

TABLE 8 Background Ranges in Room A-038A

	ΝΕ α	dis/min_	NE β dis/min		
Location	min	max	min	max	
Ceiling	20	50	1,186	1,982	
East Wall	0	65.7	1,231	1,458	
Floor under tar paper	9.6	57	1,726	3,112	
North Wall	25	65	1,154	2,575	
South Wall	0	37.6	2,408	3,000	
West Wall	0	28.2	1,398	1,652	

FIGURE 25 Building 310 Retention Tanks; Room 038 North Wall

FILE DD/380/039-V KEY α dis/min 100cm² NE ELECTRA GRID = 1 SQ METER β dis/min 100cm² NE ELECTRA

FIGURE 26 Building 310 Retention Tanks; Room 038 West Wall

December 10, 1996 Page 35

PIPES ARE ON NORTH SIDE OF DUCT WORK

There were non gamma emitting radionuclides that contributed ~ $\frac{3}{4}$ of the activity. Again the $^{239}\text{Pu}/^{241}\text{Am}$ ratio is not the same as the composite sludge sample. Separate smears of the wall and pipes were taken at a later date. The smear of the wall number 273 had 282 ± 43 dis/min α and 371 ± 59 dis/min β . The smear of the upper pipe number 277 had $12,683 \pm 283$ dis/min α and $11,295 \pm 215$ dis/min β . This piping seems to have dripped onto an asbestos wrapped pipe below with direct activity up to 325k dis/min β . The smear of the lower pipe number 275 had no activity. There was other loose activity on the walls and floors, up to 49 ± 20 dis/min α and 119 ± 29 dis/min β on 100 cm² smears. The results of the floor survey are given in Section G. The copies of the printouts from the gamma spectrometer are given in Appendix D (310 smear 271 8/14/96 north wall white streak (page D-54) and 310 smear 270 8/6/96 smear of tank 5 [page D-53]).

G. Room A-038A Water Problem

Water on the floor of this room is assumed to be flood water. After a heavy rain storm, 11.57 inches between 11 AM July 17 and 11 AM July 18 (reference 9), water was seen flowing from both ends of the tunnel between Buildings 310 and 306 on July 22. Water samples were collected from the water standing in the room on June 23. The samples were tested for radioactive and other hazardous constituents. The ANL-ESH Control Laboratory tested one of the samples for gross alpha and beta, gamma activity. The activity was found to be below the release level. The results are presented in Table 9 and a copy of the REQUEST FOR ANALYSIS form 6303 with the analysis results is presented in Appendix D (pages D-41 and D-42).

Two of the samples from the standing water were tested for low energy beta in a liquid scintillation counter. An aliquot of 0.1 ml of water was mixed with 10 ml of Ultima Gold. The detected activities in the energy bands established for ³H and ¹⁴C were indistinguishable from the detected activities in the blank sample. A copy of the print out from the Liquid Scintillation Counter is presented in Appendix D (July 1996 15:38) (pages D-45 and D-46).

Three of the samples from the standing water were sent to Heritage Environmental Services, Inc. in order to analyze for non-radiological hazardous constituents. A copy of the Certificate of Analysis is presented in Appendix D (pages D-47 through D-52).

The standing water in this room was pumped into an active 2,000 gallon retention tank and retested before it was released to the site drains. The test results are presented in Table 11. The water level before the initial removal of water was up to the bottom of a small pipe on the east wall. After of the water was pumped down to the floor level at the edge of the east wall, the distance from the floor to the pipe measured 12 inches; away from the wall the depth of the remaining water measured 2 inches. The approximate volumes of water in this room for a given depth are listed in Table 10. Water continues to enter the room. The one obvious source of the

TABLE 9 Water from Floor of A-038A

Analysis	Highest Concentration/ Activity	Limit or Background Values
pН	8.16	≤2 or ≥12.5
Cyanide	none detected	EPA 250 mg HCN/kg ¹
Sulfide	none detected	EPA 500 mg H ₂ S/kg ²
Volatile Organic	none detected	> detection level ³
Semivolatile Organic	none detected	> detection level ³
Pesticides	none detected	> detection level ³
Chlorinated Herbicides	none detected	> detection level ³
Metals	none detected	> detection level ³
Tritium	none detected	$2 \times 10^{-3} \mu\text{Ci/mL}$
Gross α	0.04 dpm/mL	0.067 dpm/mL
Gross β	0.75 dpm/mL	2.22 dpm/mL

¹ Total releasable cyanide

TABLE 10 Estimated Volume of Water in Room A-038A

Depth (inches)	feet ³	gallon
6	300	2,200
10	490	3,700
14	690	5,200
18	890	6,700

² Total releasable sulfide

The current list of compounds/metals regulated under RCRA has individual limits above the detection levels.

water was the tunnel. Eventually the sump pump was connected to the retention tanks for continuous pumping to prepare the room and tunnel for access. However, this failed to completely dry the room so the survey was performed with some water on the floor and in the tunnel. During the survey of this room between August 5 and 9, the south wall was damp from the bottom of the tunnel to the floor. The dampness extended 2 feet west of the tunnel hole and 3 feet east of the hole (see Figure 27). At the east and west walls the floor was dry on August 13, 1996, even though there was water in the center of the floor and in the hole for the sump pump. The sump pump was not working at that time.

In order to prepare the room for the survey, the mud and water on the floor of the room was shoveled into a 55 gallon drum filling it ~½ full. A survey of this shovel revealed a couple hundred dis/min β with a direct survey instrument. It was cleaned to below the detectable activity. Because contamination was found on the tar paper, the mud from the floor of this room is assumed to be contaminated even though the water was not contaminated. Any activity found in this material can be compared to the levels presented in Table 3 to determine if there has been radioactivity added to the mud by the operations in this facility. The only analysis of this material was water on a smear paper that had no contamination; and another smear with dried mud with 16 ± 0.6 dis/min α and 117 ± 2 dis/min β . The dose rate from this drum was < 0.1 mR/h.

Because of the remaining water and mud on the floor, a complete survey was not possible. Therefore, tar paper was removed from four locations; direct readings and smears were taken of the exposed floor. Nothing above instrument background levels indicated in Table 8 could be detected from the direct measurements. Low levels of β activity, up to 114 \pm 50 dis/min, were seen on the smears. The activities on both sides of the removed tar paper were measured. For most of the samples, the bottom (b) side, the one near the concrete, had higher activities (861 \pm 74 dis/min α and 1,817 \pm 96 dis/min β) than the top (t) side, the one exposed to the water and mud (46 \pm 18 dis/min α and 569 \pm 65 dis/min β).

The water in room A-038A is coming, at least in part, from the tunnel. After rain storms water was seen flowing from the tunnel into room A-038A and from the tunnel through a pipe into a drain in building 306 room B007 (see Figure 29). From a telephone conversation with A. N. Lowing (PFS-FPE) an investigation of the source of the water in the tunnel and A-038A would require ~2 days effort (cost \$2,000), a recommendation for repair would require an additional ~1 day effort (cost \$1,000). He indicated that there was no indication of a structural safety concern for a person making an entry into the tunnel. At most he recommended that trucks be restricted from driving over the tunnel while a person was in the tunnel.

FIGURE 29 Entrance to Tunnel from Building 306

H. Tunnel Radiological Survey

After a 11.57 inch rain storm on July 17 and 18, water was seen draining from a pipe at the bottom of the tunnel in Building 306 room B-007. Water was also flowing out of the tunnel in Building 310 room A-038A. On July 19, a water sample was collected from the drain pipe in B-007 and analyzed by the Control Laboratory for gross alpha and beta activity. The results as presented in Table 11 are below release criteria. A copy of the REQUEST FOR ANALYSIS form 6310 with the analysis results is presented in Appendix D (pages D-43 and D-44).

TABLE 11 Gross α and β Activity in Water Samples

			dpm/	mL
Date	Location	Request Number	α	β
6/25/96	A-038A Floor	6303	0.040	0.75
7/19/96	Tunnel Drain	6310	0.043	0.06
8/15/96	Transfer Line ²	6410	5.140	132
7/23/96	310 Tank 1 ³	119990	0.068	0.28
7/23/96	310 Tank 2	119991	0.022	0.04
7/25/96	310 Tank 2	119992	0.017	0.13
7/26/96	310 Tank 1	119993	0.031	0.22
7/26/96	310 Tank 2	119994	0.025	0.10
7/31/96	310 Tank 1	119995	0.039	0.1
7/31/96	310 Tank 2	119996	0.024	0.1
	Drinking Water St	tandard	0.067	2.2

The Department of Energy Derived Concentration Guide (DCG) limits

² This water is in a drum in Bldg. 306, Room B007.

³ ANL release limit is 10 times the Drinking Water Standard.

During the survey of the tunnel, there was water along the bottom. The pipes in the tunnel were surveyed for γ as well as α and β activity. The tunnel entrances are depicted in Figures 27 for Building 310 and Figure 29 for Building 306. The east pipe had elevated levels of β and γ activity ~3 feet from the building 310 entrance as shown in Table 12. The tunnel surfaces had levels of loose activity close to the counting uncertainties (maximum α activity 9 \pm 9 dis/min and β activity 39 \pm 22 dis/min). The pipe surfaces had higher levels of loose activities, up to 117 \pm 28 dis/min α and up to 1,281 \pm 84 dis/min β .

The two pipes used to transfer the liquid waste between buildings 310 and 306 were sampled at the 306 side of the tunnel (see Figure 29). The internal sample from the line used to transfer liquids from building 310 to building 306 had 543 \pm 59 dis/min α and 19,105 \pm 277 dis/min β . The internal sample from the line used to transfer liquids from building 306 to building 310 had 144 \pm 31 dis/min α and 7,005 \pm 172 dis/min β .

When the samples from the transfer lines were taken from the values numbered 34 and 35 in Figure 29, a 55 gal drum was filled with liquid. The Control Lab determined that there was 5.14 dpm/mL α activity and 132 dpm/mL β activity. Samples of this water were sent to ACL for Analysis. Elevated concentrations of RCRA metals were found in the water. The alpha activity was 30% 238 U, 35% 234 U, 24% $^{238/240}$ Pu and 6% 241 Am + 238 Pu as determined by alpha spectroscopy. The proportion of Pu and Am in the total alpha activity is greater than that found in the sludge sample collected in June 1995 where it was <1%. The results are presented in Table 13 below.

A copy of the REQUEST FOR ANALYSIS form 6401 is in Appendix D along with the Analytical Chemistry Laboratory and Reports of Analytical Results (pages D-60 through D-67).

TABLE 12 Tunnel Pipe Survey Results

Location	α dis/min-100 cm ²	β dis/min-100 cm ²	γ cts/min
East (left) pipe	0	9,000	15,000
West (right) pipe	66	1,480	500
Background	66	1,480	500

TABLE 13 Water from Radioactive Waste Transfer Line

San Carlotte Contraction of the		
Analysis	Highest Concentration/ Activity	Limit or Background Values
pН	8.16	≤2 or ≥12.5
γ Spec	127 ± 13 pCi/mL ¹³⁷ Cs	$< 1 \times 10^{-3} \text{ pCi/mL}^{137}\text{Cs}$
γ Spec	$7.2 \pm 0.7 \mathrm{pCi/mL}^{241}\mathrm{Am}$	$< 1 \times 10^{-6} \text{ pCi/mL}^{241} \text{Am}$
γ Spec	5.2 ± 0.5 pCi/mL ⁶⁰ Co	$< 1 \times 10^{-3} \text{ pCi/mL}^{60}\text{Co}$
Metals	6.77 μg/mL Cd	$1.0~\mu \text{g/mL Cd}$
Metals	15.1 μg/mL Pb	$5.0~\mu \text{g/mL Pb}$
Gross α	5.14 dpm/mL	0.067 dpm/mL
Gross β	132.1 dpm/mL	2.22 dpm/mL
α Spec*	46 pCi/mL ²³⁸ U	$4 \times 10^{-4} \text{ pCi/mL}^{238} \text{U}$
α Spec*	54 pCi/mL ²³⁴ U	$5 \times 10^{-4} \text{ pCi/mL}^{234} \text{U}$
α Spec*	37 pCi/mL ^{239/240} Pu	$<1 \times 10^{-6} \text{ pCi/mL}^{239/240} \text{Pu}$

^{*}Calculated from ²⁴¹Am γ Spec and the alpha spectrum.

I. Room A-050A Radiological Survey

The north, east and west walls of this room are painted from the grate to a height of ~5 feet. The south wall, except for the portion that is constructed of bricks, is also painted from ~3 feet to ~5 feet. The walls under the paint were not checked for either direct alpha or loose alpha and beta contamination. This room measures 16 feet 7 inches north to south and 27 feet 6 inches east to west. Direct exposure rates at the bottom of tanks 2, 3, and 4 ranged from 0.1 mR/h to 0.7 mR/h (see Figures 30 through 32). On tank 3 there was one location with fixed α contamination; 250 dis/min-100 cm². On tank 4 there are six locations with direct α contamination; up to 1500 dis/min-100 cm², most on the north end of the tank. There are also low levels of loose activity on the outside of the tanks and pipes, up to 49 ± 20 dis/min α and 381 ± 45 dis/min β . A smear of the contaminated spots was 61 ± 22 dis/min α and 458 ± 49 dis/min β . The smear results are tabulated in Appendix B Table B1.

The floor and walls up to one meter were covered with tar paper. It is assumed that the paper was used to fix activity from a spill. The β contamination below the levels presented in Table 14 below could not be seen because of the activity at the bottom of the tanks. Detectable direct contamination

KEY
GRID = 1 SQ METER

dis/min 100cm 2 NE ELECTRA dis/min 100cm 2 NE ELECTRA mR/h RO-20

FIGURE 31 Building 310 Retention Tanks; Room 050 Tank 3

FIGURE 32 Building 310 Retention Tanks; Room 050 Tank 4

TABLE 14 Background Ranges in Room A-050A

		Eα min	NE β dis/min		
Location	min	max	min	max	
Ceiling	0	57	1,370	1,860	
East Wall	0	50	2,940	7,200	
Floor	0	35	3,000	7,936	
North Wall	0	57	1,860	3,000	
South Wall	0	57	3,100	5,500	
West Wall	0	57	1,400	2,022	

levels on the floor are presented in Figures 33 and 34. Considerable contamination was detected on the tar paper on the floor; up to 800k dis/min α and 96k dis/min $\beta\gamma$ using a 100 cm² detector. The loose activity on the tar paper was up to 35 ± 17 dis/min α and 639 ±57 dis/min β . There are also nine locations where the tar paper was either missing or removed. The direct activities were measured up to 3,141 dis/min α and up to 150k dis/min β . The loose activity under the tar paper was up to 7.6 ± 8.2 dis/min α and up to 82 ± 26 dis/min β . The north and west walls also had direct contamination up to 5.8k dis/min α and 105k dis/min $\beta\gamma$ using a 100 cm² detector (see Figures 35 and 36).

Large area smears, number 500 through 502, from the hot spots on the west wall had activity up to $1,125\pm85$ dis/min α and $26,007\pm323$ dis/min β around the electric box. The gross α and β analyses of these smears are presented in Appendix B Table B2. A gamma spectral analysis of the hottest smear (502) by the ESH-DA internal dosimetry laboratory indicated ¹³⁷Cs, ⁶⁰Co and ²⁴¹Am. A copy of the analysis results are presented in Appendix D (page D-55). A comparison of the radionuclide composition of smear with that of the composite tank sludge sample is presented in Table 15. Although the beta activity of both samples is dominated by the ¹³⁷Cs, the ²⁴¹Am fraction of the gross alpha activity from the smear is much greater than the ²⁴¹Am fraction from the sludge sample. If the ratio of ²³⁹Pu to ²⁴¹Am is assumed to be the same for both samples, then the alpha contamination of the smear is entirely ²³⁹Pu and ²⁴¹Am as indicated in column 5.

File DB/380/050-FL KEY α dis/min 100cm² NE ELECTRA dis/min 100cm² NE ELECTRA

FIGURE 34 Building 310 Retention Tanks; Room 050 Floor under Tar Paper

FILE DDV3167050-N KEY α dis/min $100 \, \text{cm}^2$ NE ELECTRA GRID = 1 SQ METER β dis/min $100 \, \text{cm}^2$ NE ELECTRA

FILE DD\310\050-V KEY α dis/min 100cm 2 NE ELECTRA GRID = 1 SQ METER β dis/min 100cm 2 NE ELECTRA

FIGURE 36 Building 310 Retention Tanks; Room 050 West Wall

TABLE 15 Isotopic Analysis of Contamination

S	Composit Sludge S		Smear #502 W Wall 050		Smear #270 Tank 5 Bottom 038		Smear #271 N wall & Pipe 038		Smear #536 Pump 068		Air Samples #194 - #209	
	pCi/g	% Sum	dis/min	% Gross	dis/min	% Gross	dis/min	% Gross	dis/min	% Gross	dis/min	% Sum
Gross α	23,050.4		1,125		8,437		1,295		153			
Gross β	73,047.8		5,736		5,736		1,335		396			
²³⁹ Pu	62.1	0.15		85.04		252.91		147.32			7 29 1	
²⁴¹ Am	11.1	0.03	171	15.20	3,814	45.21	341	26.33				
¹³⁷ Cs	107,200	89.34	20,500	357.39	2,667	46.50	294	27.02	25	6.31	21.7	1.41
⁶⁰ Co	2,369	1.97	30	0.52							2.5	0.16
²¹⁰ Pb						ann of					214	13.88
⁷ Be											1304	84.55
α Sum	42,185	0.18	171	100.24	3,814	298.12	341	173.65	0.00	0.00	0.0	0.00
β Sum	119,995	91.31	20,530	357.91	2,667	46.50	294	22.02	25.00	6.31	1,542.2	100.00
%Sum/Gross α	183		15		45		26		0.00			
% Sum/Gross β	16,438		358		47		22		6.31			

¹ The pCi/g sums for this sample are taken from Table 1.

J. Room A-062A Radiological Survey

This room measures 15 feet 8 inches north to south and 12 feet east to west. Direct exposure rates at the bottom of tank 1 ranged from 0.5 mR/h to 1 mR/h (see Figure 37). There was one location with fixed α contamination; 300 dis/min-100 cm² with 44.5k dis/min-100 cm² β . Low levels of loose β activity, up to 104 \pm 28 dis/min, was measured on the outside of the tank and pipes. The smear from the area with direct contamination had 111 \pm 30 dis/min α and 2,185 \pm 101 dis/min β . The smear of the bottom of the tank had 454 \pm 54 dis/min α and 20,560 \pm 288 dis/min β . The smear results are tabulated in Appendix B Tables B1 and B2.

Because of the contamination in the bottom of the tank, direct surveys for β or γ contamination on the floor and walls was difficult. From Table 16 below, the level of activity that could be present and not detected is recorded. However, some contamination was detected above the background levels on the floor and west wall (see Figures 38 and 39). The direct activity was up to 4,300 dis/min α and 63.4k dis/min β using a 100 cm² detector. There was also loose activity, up to 55 \pm 21 dis/min α and 1,756 \pm 91 dis/min β on 100 cm² smears.

TABLE 16 Background Ranges in Room A-062A

	ΝΕα	dis/min_	NE β dis/min		
Location	min	max	min	max	
			,		
Ceiling	0	66	1284	2722	
East Wall	NA	NA	NA	NA	
Floor	0	20	22.7 k	61.3 k	
North Wall	0	57	4828	50 k	
South Wall	0	66	1284	6400	
West Wall	0	57	3750	6480	

NA Not Applicable, no east wall

FIGURE 37 Building 310 Retention Tanks; Room 062 Tank 1

FIGURE 38 Building 310 Retention Tanks; Room 062 Floor

					31 100 2
	K 0	0	00	E	
			700 25.6k	αβ	
			4.3k 63.4k	αβ	2.3k α 35k β

FILE DDV300062-V KEY α dis/min 100cm² NE ELECTRA GRID = 1 SQ METER β dis/min 100cm² NE ELECTRA

K. Room A-068A Radiological Survey

The dry debris was vacuumed from the floor of this room and collected in a 55 gallon drum ($^{-1}$ /₂ full). The exposure rate at the surface of this drum was < 0.1 mR/h. All waste that was accumulated during the characterization is in plastic bags in this room. The waste consists of gloves, shoe covers and tyveks. The exposure rate from the waste is < 0.1 mR/h.

For consistency Table 17 below was compiled for this room even though the β background measurements were much lower. The level of activity that could be present and not detected is recorded. Some contamination was detected above the background levels on the floor (see Figure 40). The fixed activity was up to 140 dis/min α and 3.1k dis/min β using a 100 cm² detector. There was no loose activity on 100 cm² smears. The smear results are tabulated in Appendix B Table B1.

There were numerous items that were found in this room including; scrub buckets, pumps, cabinets and shelves. One of the pumps had an old sticker indicating internal contamination. The direct reading over the top of the pump after the cover was removed was 80 dis/min α and 8,500 dis/min β using a 100 cm² detector. Smear number 536, of the internal surfaces of the contaminated pump, had elevated activity 215 \pm 63 dis/min α and 20,020 \pm 528 dis/min β as measured on the NE in the integrate mode. The activity as measured by the DABRAS was 153 \pm 32 dis/min α and 396 \pm 60 dis/min β . Smear number 536 was sent for gamma spectral analysis, the only gamma emitting radionuclide was ¹³⁷Cs with an activity of 25 dis/min (see Table 15). The beta activity measured by both the NE and the DABRAS indicated that there is a non gamma

TABLE 17 Background Ranges in Room A-068A

	NE dis/			Eβ /min
Location	min	max	min	max
Ceiling	0	40	939	2151
East Wall	0	55	850	2300
Floor	0	50	939	3000
North Wall	0	40	800	1007
South Wall	0	45	939	2824
West Wall	0	35	900	2036

KEY GRID = 1 SQ METER

 α dis/min 100cm² NE ELECTRA β dis/min 100cm² NE ELECTRA

December 10, 1996 Page 58

emitting radionuclide, probably 90 Sr. The rim of this pump had 183 ± 38 dis/min α and 429 ± 48 dis/min β . The maximum activity on any of the other smears of the miscellaneous equipment was 14 ± 11 dis/min α and 29 ± 21 dis/min β . There was a cap on the contaminated pump that was sent to ESH-DA for gamma spectral analysis. It contained 200 mg to 300 mg of 232 Th. The direct survey results had detected no α contamination in any orientation. The cap containing 232 Th is an exempted material as defined in reference 10. The memo from Don Nelson containing the results of the gamma spectrometric analysis con be found in Appendix D (Building 310 samples [page D-56]). Three pages from reference 10 are also included in Appendix D (pages D-57 through D-59).

L. Internal Conditions of Tanks

The internal smears were originally taken of a single pipe at the top flange of one of the set of three tanks in each room. The smear from A-038A had the highest activity 57 \pm 22 dis/min α and 266 \pm 39 dis/min β . In addition the inside of each tank was smeared with a ball of tissue at the end of a pole. The smears were counted both on the NE in the integrate mode and on the DABRAS. The results of both analyses are presented in Appendix B Table B2 and again in Table B4 for ease of viewing. In general, the tissue was arranged so that the activity measured by the DABRAS was greater than that measured by the NE. In both cases, an attempt was made to arrange the tissue so that the maximum activity could be measured.

A composite sludge sample was removed from four of the ten inactive retention tanks on June 23, 1995. The radionuclides found in the sample are given in Table 1 and a summary of the non-radiological results are given in Table 18. The TMA Thermo analytical Inc. documentation is presented in Appendix D. The memo from J. Demski (EMO/WM) indicates that the concentrations of hazardous materials "were low enough so that the sludge would not be considered characteristically hazardous... the sludge in the tanks would be classified as low level radioactive waste."

A visual inspection of the tanks was made using a flashlight for illumination. The tanks appear to have a glass or metal liner. The depths of the water and residue that were estimated, not measured, are presented in Table 19. The smear was taken inside each tank at the same time the inspection was made. The smear results are presented below and in Appendix B Table B4. The exposure rates in this table are the maximum external measurements.

TABLE 18 Retention Tank Sample dated 6/23/95

Analysis	Highest Concentration/Activity	Limit or Background Values
рН	7	≤2 or ≥12.5
Mercury	0.631 mg/kg	4 mg/kg Hg
PCB's	0.0017 mg/L Aroclor-1253	
Volatile Organic	none detected	> detection level ¹
Semivolatile Organic	none detected	> detection level ¹
Pesticides	none detected	> detection level ¹
Metals	0.111 mg/L Ba	EPA 5.0 mg/L Ba
Gross α & Gross β	see Table 1	

¹ The current list of compounds regulated under RCRA has individual limits above the detection level.

TABLE 19 Retention Tanks; Internal Conditions

					ears /min)	Max
Room No.	Tank No.	Water	Visual Inspection	α	β	mR/h
A-062A	1	dry	~1" of scale	208	17,700	1.0
A-050A	2	dry	small amount of scale < 1/2"	518	24,250	0.7
A-050A	3	water	~1" to 2"	226	10,050	0.3
A-050A	4	dry	~½" of scale	407	11,140	0.3
A-038A	5	dry	dust	144	6,264	1.0
A-038A	6	dry	dust	89	4,700	0.1
A-038A	7	dry	small amount of scale < 1/2"	96	5,625	0.1
A-026A	8	water	~2" of mud and water	2,749	46,420	0.6
A-026A	9	water	~2" to 3"	1,560	53,360	0.5
A-026A	10	water	~2" to 3"	64	1,703	0.5

M. Brick Breakout Wall

The current plans for the decontamination of the inactive tanks is to remove them intact from the building after removing the brick break out wall. Therefore in addition to direct and smear surveys, samples were scraped from the brick walls. The scrapings were counted for gross α and β activity similar to the smears. The scrapings with the highest measured activity were from room A-038A with 9 \pm 9 dis/min α and 14 \pm 1 9 dis/min β . The brick scrapping results are tabulated in Appendix B Table B1 and complied in Table B3 for ease of viewing. No contamination was found in the brick scrapings.

N. Grate Walk Ways

There are grate walk ways ~1 meter above the floor of each room. Direct and smear surveys were performed. In rooms A-038A and A-050A, there were three locations with direct contamination, up to 4,833 dis/min α and up to 14.4k dis/min β using a 100 cm² probe (see Figure 1). The exposure rate from tank 1 in room A-062A was too high to determine if the activity was from the grate or background from the tank. The smear results indicated loose activity up to 22 \pm 13 dis/min α and 63 \pm 48 dis/min β in room A-038A; and up to 9 \pm 10 dis/min α and 107 \pm 50 dis/min β in room A-050A. The loose activity on the grates of A-026A and A-062A was statically insignificant.

XI. SUMMARY OF RESULTS ABOVE BACKGROUND OR RELEASE CRITERIA

Past experience found direct surveys of the 317 vaults with significant activity on the concrete. During scabbling of the concrete from these vaults, airborne radioactivity was detected on the retrospective air samples. Past experience also found that direct surveys of the building 200 "hot dock" did not detect any radioactivity. However, during removal and repair of the concrete from the building 200 dock airborne radioactivity was detected on the retrospective air samples. Therefore, it must be assumed that any scabbling of the concrete walls in the 310 retention tank area will produce measurable airborne radioactivity.

Contamination was found in all of the rooms, 068A, 062A, 050A, 038A, 026A, of the Building 310 Retention Tank Facility. Because of the significant amounts of contamination, efforts to decontaminate the exteriors of the tanks, walls and floor will have to include respiratory protection measures for the personnel completing this work. Because of the high exposure rates from the contamination in the bottom of the tanks, the walls and floor will have to have a thorough survey by Health Physics after the tanks are removed and after the tar paper is removed.

The elbows and some of the pipes are covered with asbestos insulation.

The results of the air samples showed that during the characterization slight amounts of radioactive particles were detected in the air.

There is a contaminated pump in Room 068 that will have to be disposed of as solid radioactive waste.

XII. ESTIMATE OF INVENTORY OF ACTIVITY

A. Tanks

The estimated amount of radioactivity in each tank is presented in Table 20. The activities given in Table 1 were used as the average activity from tanks 3, 8, 9, and 10. The estimated depth of the scale or sludge in each tank was determined from the information in Table 19 and used to estimate the volume of contaminated material. The density of the material was assumed to be $1.5~\text{g/cm}^2$. The maximum dose rates at the outside of the tanks was also used in the estimate of the activities inside the tanks. The total estimated α activity is 34.3 mCi; and the total estimated β activity is 97.5 mCi.

Estimates of the amount of activity on the external surface of each tank is given in Table 21. The estimates are based on the direct activities that are shown in the maps of the tanks. If the direct surveys could not measure anything above the high background from the material inside the tank, then the estimate is based on a weighted average of the individual smears (for α , tanks 2 and 9; for β tanks 2, 3, 4 and 9). The surface area of each tank is 3.17 x 10⁵ cm². Without additional information, it should be assumed that 50% of the α activity is 241 Am and 50% is 239 Pu; and 50% of the β activity is 137 Cs and 50% is 90 Sr/ 90 Y.

TABLE 20 Inventory Estimate inside Tanks

				Control of	Том	nk #				
		B 18 70 3					7	8	9	10
	1	2	3	4	5	6		•		
Scale (in)	1	1/4	2	1/2	1/8	1/8	1/4	2	3	3
	7.59	0.95	21.39	2.69	0.34	0.34	0.95	21.39	39.16	39.16
Vol (gal) Mass (kg)	43.10	5.40	121.47	15.27	1.91	1.91	5.40	121.47	222.33	222.33
nuclide		E 8 8	1 1 1	1	Activity in ea	ach tank (μC	Ci)			
137 _{Cs}	9,727.0	853.40	8,223.8	1,033.56	431.23	43.123	121.915	16,447.7	25,088.7	25,088.7
^{234m} Pa	560.1	49.14	473.6	59.52	24.83	2.483	7.020	947.1	1,444.7	1,444.
²³⁴ Th	362.4	31.80	306.4	38.51	16.07	1.607	4.542	612.8	934.7	934.
		18.86	181.7	22.84	9.53	0.953	2.694	363.5	554.4	554.
⁶⁰ Co	215.0	1.36	13.1	1.65	0.69	0.069	0.194	26.2	40.0	40.
⁴⁰ K	15.5	0.70	6.8	0.85	0.35	0.035	0.100	13.5	20.6	20.
⁹⁰ Sr β Sum	10,887.9	955.26	9,205.4	1,156.92	482.70	48.270	136.466	18,410.8	28,083.2	28,083.
238 _U	2,111.4	185.25	1,785.2	224.35	93.61	9.361	26.464	3,570.3	5,446.0	5,446
234 _U		131.83	1,270.4	159.66	66.61	6.661	18.833	2,540.8	3,875.6	3,875.
235 _U	1,502.6	18.12	174.6	21.94	9.16	0.916	2.588	349.2	532.7	532.
	206.5		5.0	0.63	0.26	0.026	0.074	10.0	15.2	15
²³⁹ Pu	5.9	0.52	0.8	0.03	0.04	0.004	0.013	1.7	2.6	2.
²⁴¹ Am	1.0	0.09		0.03	0.01	0.001	0.003	0.5	0.7	0
²³⁸ Pu	0.3	0.02	0.2	406.72	169.69	16.969	47.976	6,472.4	9,872.8	9,872.
α Sum	3,827.7	335.83	3,236.2	400.72	107.07	10.707				

TABLE 21 Tank External Inventory Estimate

Tank #	μСί α	μСί β
1	0.014	2.005
2	0.004	0.090
3	0.011	0.095
4	0.225	0.108
5	22.973	14.414
6	0.315	4.189
7	2.432	6.757
8	0.113	2.973
9	0.003	0.018
10	0.036	0.901

B. Walls and Floors

The total amount of contamination on the walls and floors was estimated from the direct readings that are displayed on the maps. For calculational purposes, it was assumed that all of the alpha contamination was due to either ²⁴¹Am or ²³⁹Pu; and the total beta contamination was due to either ¹³⁷Cs or ⁹⁰Sr. The ratios of the isotopes were based on the gamma spectral analyses presented in Table 15. The estimates are presented in Table 22.

In addition to the radioactivity on the wall and floor surfaces, there are low levels of radionuclides in the mud that was removed from room A-038A floor. With the limited amount of data that is available, the estimates in Table 23 were generated. Because of the gamma spectroscopy information, it is assumed that 50% of the α activity is 241 Am and 50% is 239 Pu; and 50% of the α activity is 137 Cs and 50% is 90 Sr/ 90 Y. The total volume of mud is assumed to be 30 gal (113,600 mL). Most of the mud was removed from the floor and is now in a 55 gal drum in room A-068A.

TABLE 22 Inventory Estimate on Walls & Floors

-Kallefielder			μCi		
Radionuclide	A-026A	A-038A	A-050A	A-062A	A-068A
Total α	2.041	2.644	93.541	0.869	0.009
²⁴¹ Am	0.735	1.243	14.031	0.313	0.001
²³⁹ Pu	1.306	1.401	79.509	0.556	0.008
Total β	63.108	68.063	110.856	43.423	0.27
137Cs	39.758	37.435	87.576	27.357	0.22
90Sr	23.350	30.628	23.280	16.067	0.05

TABLE 23 Inventory Estimate in the Floor Mud

Radionuclide	pCi/mL	μCi
Total α	30	3.41
²⁴¹ Am	15	1.70
²³⁹ Pu	15	1.70
Total β	210	23.86
¹³⁷ Cs	105	11.93
⁹⁰ Sr/ ⁹⁰ Y	105	11.93

C. Pipes

The estimate for the internal and external activity on the pipes was combined. It is assumed that the pipes are drained of all liquid. In Table 24 below is the estimate.

In the process of taking a sample of the residue from the transfer lines, it was learned that there was water in the lines. If both transfer lines were full of water, they would contain 144 gallons (545,000 mL). One 55 gallon drum was filled. The radionuclide content listed in Table 25 is estimated from analysis results for both the drum and the liquid remaining in the lines.

TABLE 24 Pipe Inventory Estimate

Room	μСί α	μСі β
		0.400
A-026A	0.003	0.109
A-038A	0.239	0.802
A-050A	0.022	0.450
A-062A	0.007	0.135
A-038A Transfer Line	0.009	0.147
Lab drain	0.038	1.351
Tunnel under paved area	0.342	12.162
Tunnel in Bldg 306	0.077	36.036
Sum	0.737	51.192

TABLE 25 Liquid from the Transfer Lines

Radionuclide	pCi/mL	μCi
²⁴¹ Am	7.2	3.92
¹³⁷ Cs	127	69.22
⁶⁰ Co	5.2	2.83

XIII. LESSONS LEARNED

- Old abandoned facilities have radioactive contamination
- · A thorough characterization is needed for an accurate assessment
- Pre-numbering the samples and pre-printing the sample labels helped keep the data organized

XIV. REFERENCES

- USNRC Regulatory Guide 1.86, "Termination of Operating Licenses for Nuclear Reactors" 1974
- 2. DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (1990)
- 3. Draft DOE Rule 10 CFR 834, "Radiation Protection of the Public" (1995)
- NCRP Report No. 94, "Exposure of the Population in the United States and Canada from Natural Background Radiation," National Council on Radiation Protection and Measurements, Bethesda, Maryland (1987)
- 5. DOE 10 CFR 835, "Occupational Radiation Protection" (1993)
- EPA-5201/1-88-020, "Limiting Values of Radionuclide Intake And Air Concentration and Dose Conversion Factors For Inhalation, Submersion, and Ingestion", Federal Guidance Report No. 11
- 40 CFR Parts 260-299, Code of Federal Regulations, <u>Protection of Environment</u> (July 1, 1995), U. S. Government Printing Office, Washington
- "Argonne National Laboratory-East, Site Environmental Report for Calendar Year 1994" by N. W. Golchert and R. G. Kolzow, ANL-95/8, May 1995 (UC-607)
- "Heavy rainstorms cause widespread but minor damage at Argonne-East", Argonne News, Monday, July 29, 1996
- Illinois Department of Nuclear Safety, Regulation 52 Illinois Administrative Code: Chapter II Section 330.30
- 11. Micro Shield Version 4, Grove Engineering, 1992

Wheel December of Million Saidy Regulation 51 Phin's Administrace Coles

APPENDIX A: Documentation of Samples

310/ 026	- Pipes 10 -	1.0
Bldg/Room	Location	Sample #
Coordinates	↑:	
	→ :	A STATE OF THE PARTY OF

310/ 026	- Pipes 9 -	3.0
Bldg/Room	Location	Sample #
Coordinates	↑ :	
	→:	
Sampler:	Counter:	

310/ 026	- Tank 8 -	5.0
3ldg/Room	Location	Sample #
Coordinates	↑ : ·	-
	→:	

310/ 026	- Pipes 10 -	7.0
Bldg/Room	Location	Sample #
Coordinates	↑ :	
	→:	
Sampler:	Counter:	

310/ 026	- Pipes 8 -	2.0
Bldg/Room	Location	Sample #
Coordinates	↑:	
	→:	
Sampler:	Counter:	

Type: LA Sm		- 40
310/ 026	- Tank 10 -	4.0
Bldg/Room	Location	Sample #
Coordinates	↑:	
	→:	
Sampler:	Counter:	

310/ 026	- Tank 9 -	6.0
Bldg/Room	Location	Sample #
Coordinates	↑:	
	→:	

310/ 026	- Pipes 10 -	8.0
Bldg/Room	Location	Sample #
Coordinates	↑:	
	→:	- 32

TABLE A1 Building 310 Characterization Sample Labels

				Coordinates (feet)			Count	
Туре	Room	Location	No.	up	right	Sample Date	Date	time
LA Smear	A-026A	Pipes 10	1	Horizontal	& Vertical	07/12/96	07/15/96	10:30:03
LA Smear	A-026A	Pipes 8	2	Horizontal	& Vertical	07/12/96	07/15/96	10:32:1:
LA Smear	A-026A	Pipes 9	3	Horizontal	& Vertical	07/12/96	07/15/96	10:34:2
LA Smear	A-026A	Tank 10	4	Entire	Tank	07/12/96	07/15/96	10:36:3
LA Smear	A-026A	Tank 8	5	Entire	Tank	07/12/96	07/15/96	10:38:3
LA Smear	A-026A	Tank 9	6	Entire	Tank	07/12/96	07/15/96	10:40:4
SA Smear	A-026A	Pipes 10	7	12	3	07/12/96	07/15/96	10:42:5
SA Smear	A-026A	Pipes 10	8	10	3	07/12/96	07/15/96	10:45:0
SA Smear	A-026A	Pipes 8	9	N12	3	07/12/96	07/15/96	10:47:1
SA Smear	A-026A	Pipes 8	10	N8	3	07/12/96	07/15/96	10:49:1
SA Smear	A-026A	Pipes 9	11	12	3	07/12/96	07/15/96	10:51:2
SA Smear	A-026A	Pipes 9	12	10	3	07/12/96	07/15/96	10:53:3
Internal Smear	A-026A	Pipes	13	10	3	07/12/96	07/15/96	10:55:4
SA Smear	A-026A	Tank 10	14	E7	12	07/12/96	07/15/96	10:57:5
SA Smear	A-026A	Tank 10	15	N8	3	07/12/96	07/15/96	10:59:5
SA Smear	A-026A	Tank 8	16	E7	4	07/12/96	07/15/96	11:02:0
SA Smear	A-026A	Tank 8	17	S6	5	07/12/96	07/15/96	11:04:1
SA Smear	A-026A	Tank 9	18	N4	3	07/12/96	07/15/96	11:06:2
SA Smear	A-026A	Tank 9	19	W5	3	07/12/96	07/15/96	11:08:2
SA Smear	A-026A	Ceiling	20	8	24	07/11/96	07/15/96	11:10:3
SA Smear	A-026A	Ceiling	21	8	12	07/11/96	07/15/96	11:12:4
SA Smear	A-026A	East Wall	22	3	10	07/12/96	07/15/96	11:14:5
SA Smear	A-026A	East Wall	23	12	14	07/12/96	07/15/96	11:17:0
SA Smear	A-026A	East Wall	24	3	14	07/12/96	07/15/96	11:19:0
SA Smear	A-026A	East Wall	25	2	4	07/12/96	07/15/96	11:21:1
SA Smear	A-026A	Floors	26	12	12	07/12/96	07/15/96	11:23:2
SA Smear	A-026A	Floors	27	6	22	07/12/96	07/15/96	11:25:3
SA Smear	A-026A	Floors	28	3	15	07/12/96	07/15/96	11:27:3
SA Smear	A-026A	Floors	29	3	3	07/12/96	07/15/96	11:29:4
SA Smear	A-026A	North Wall	30	4	22	07/12/96	07/15/96	11:31:5
SA Smear	A-026A	North Wall	31	4	13	07/12/96	07/15/96	11:34:0
SA Smear	A-026A	North Wall	32	10	25	07/12/96	07/15/96	11:36:1
SA Smear	A-026A	North Wall	33	12	4	07/12/96	07/15/96	11:38:1
SA Smear	A-026A	South Wall	34	2	5	07/12/96	07/15/96	11:40:2
SA Smear	A-026A	South Wall	35	12	25	07/12/96	07/15/96	11:42:3
SA Smear	A-026A	South Wall	36	8	12	07/12/96	07/15/96	11:44:4
SA Smear	A-026A	South Wall	37	8	2	07/12/96	07/15/96	11:46:5
SA Smear	A-026A	West Wall	38	3	15	07/12/96	07/15/96	11:48:5
SA Smear	A-026A	West Wall	39	16	6	07/12/96	07/15/96	11:51:0
SA Smear	A-026A	West Wall	40	2	12	07/12/96	07/15/96	11:53:1
SA Smear	A-026A	West Wall	41	6	8	07/12/96	07/15/96	11:55:2

TABLE A1 Building 310 Characterization Sample Labels

			Coordinates (feet)			_	Count	
Туре	Room	Location	No.	up	right	Sample Date	Date	time
LA Smears	A-038A	Pipes 5	42	Horizontal	& Vertical	08/05/96	08/06/96	13:33:57
LA Smears	A-038A	Pipes 6	43	Horizontal	& Vertical	08/05/96	08/06/96	13:53:38
LA Smears	A-038A	Pipes 7	44	Horizontal	& Vertical	08/05/96	08/06/96	13:58:04
LA Smears	A-038A	Tank 5	45	Entire	Tank	08/05/96	08/06/96	14:01:58
LA Smears	A-038A	Tank 6	46	Entire	Tank	08/05/96	08/06/96	14:05:43
LA Smears	A-038A	Tank 7	47	Entire	Tank	08/05/96	08/06/96	14:09:19
SA Smear	A-038A	Pipes 5	48	13	2	08/13/96	08/14/96	09:20:3
SA Smear	A-038A	Pipes 5	49	11	0	08/13/96	08/14/96	09:22:43
SA Smear	A-038A	Pipes 6	50	13	2	08/13/96	08/14/96	09:24:5
SA Smear	A-038A	Pipes 6	51	11	0	08/13/96	08/14/96	09:26:5
SA Smear	A-038A	Pipes 7	52	13	2	08/13/96	08/14/96	09:29:0
SA Smear	A-038A	Pipes 7	53	-11	0	08/13/96	08/14/96	09:31:1
Internal Smear	A-038A	Pipes	54	10	3	08/13/96	08/14/96	09:33:2
SA Smear	A-038A	Tank 5	55	W5.5	5.33	08/13/96	08/14/96	09:35:3
SA Smear	A-038A	Tank 5	56	E5.6	5.33	08/13/96	08/14/96	09:37:3
SA Smear	A-038A	Tank 6	57	E5.5	5.33	08/13/96	08/14/96	09:39:4
SA Smear	A-038A	Tank 6	58	W5.5	5.33	08/13/96	08/14/96	09:41:5
SA Smear	A-038A	Tank 7	59	E5.5	5.33	08/13/96	08/14/96	09:44:0
SA Smear	A-038A	Tank 7	60	W5.5	5.33	08/13/96	08/14/96	09:46:0
SA Smear	A-038A	Ceiling	61	4	10	08/05/96	08/06/96	15:07:1
SA Smear	A-038A	Ceiling	62	center		08/05/96	08/06/96	15:09:2
SA Smear	A-038A	East Wall	63	2	3.5	08/05/96	08/06/96	15:11:
SA Smear	A-038A	East Wall	64	7	2	08/05/96	08/06/96	15:13:
SA Smear	A-038A	East Wall	65	7	6	08/05/96	08/06/96	15:15:
SA Smear	A-038A	East Wall	66	2	10.67	08/05/96	08/06/96	15:17:
SA Smear	A-038A	Floors	67	4	24	08/05/96	08/06/96	15:20:
SA Smear	A-038A	Floors	68	13.75	18	08/05/96	08/06/96	15:22:
SA Smear	A-038A	Floors	69	13.75	11	08/05/96	08/06/96	15:24:
SA Smear	A-038A	Floors	70	13.75	1.33	08/05/96	08/06/96	15:26
SA Smear	A-038A	North Wall	71	2	8.58	08/05/96	08/06/96	15:28
SA Smear	A-038A	North Wall	72	7	15	08/05/96	08/06/96	15:30
SA Smear	A-038A	North Wall	73	2	19.67	08/05/96	08/06/96	15:32
SA Smear	A-038A	North Wall	74	7	24	08/05/96	08/06/96	15:35
SA Smear	A-038A	South Wall	75	2	8.58	08/05/96	08/06/96	15:37
	A-038A	South Wall	76	2	19.67	08/05/96	08/06/96	15:39
SA Smear	A-038A	South Wall	77	0.83	0.58	08/05/96	08/06/96	15:41
SA Smear	A-038A	South Wall	78	6	24	08/05/96	08/06/96	15:43
SA Smear		West Wall	79	2	2	08/05/96	08/06/96	15:45
SA Smear	A-038A	West Wall	80	6.67	6.67	08/05/96	08/06/96	15:47
SA Smear	A-038A	West Wall	81	2	9.75	08/05/96	08/06/96	15:49
SA Smear SA Smear	A-038A A-038A	West Wall	82	6.67	12.5	08/05/96	08/06/96	15:52

TABLE A1 Building 310 Characterization Sample Labels

Туре		Coordinates (feet				s (feet)		Count		
	Room	Location	No.	up	right	Sample Date	Date	time		
LA Smear	A-050A	Pipes 2	83	Horizontal	& Vertical	07/10/96	07/11/96	12:42:		
LA Smear	A-050A	Pipes 3	84	Horizontal	& Vertical	07/10/96	07/11/96	12:44:		
LA Smear	A-050A	Pipes 4	85	Horizontal	& Vertical	07/10/96	07/11/96	12:46:		
LA Smear	A-050A	Tank 2	86	Entire	Tank	07/10/96	07/11/96	12:48:		
LA Smear	A-050A	Tank 3	87	Entire	Tank	07/10/96	07/11/96	12:50:		
LA Smear	A-050A	Tank 4	88	Entire	Tank	07/10/96	07/11/96	12:52:		
SA Smear	A-050A	Pipes 2	89	10	3	07/10/96	07/11/96	12:55:		
SA Smear	A-050A	Pipes 2	90	12	3	07/10/96	07/11/96	12:57:		
SA Smear	A-050A	Pipes 3	91	10	3	07/10/96	07/11/96	12:59:		
SA Smear	A-050A	Pipes 3	92	12	3	07/10/96	07/11/96	13:01:		
SA Smear	A-050A	Pipes 4	93	12	3	07/10/96	07/11/96	13:03:		
SA Smear	A-050A	Pipes 4	94	10	3	07/10/96	07/11/96	13:05:		
Internal Smear	A-050A	Pipes	95	9	3	07/10/96	07/11/96	13:07:		
SA Smear	A-050A	Tank 2	96	S8	3	07/10/96	07/11/96	13:10:		
SA Smear	A-050A	Tank 2	97	N8	3	07/10/96	07/11/96	13:12:		
SA Smear	A-050A	Tank 3	98	S8	3	07/10/96	07/11/96	13:14:		
SA Smear	A-050A	Tank 3	99	N8	3	07/10/96	07/11/96	13:16:		
SA Smear	A-050A	Tank 4	100	N8	3	07/10/96	07/11/96	13:18:		
SA Smear	A-050A	Tank 4	101	S8	3	07/10/96	07/11/96	13:20:		
SA Smear	A-050A	Ceiling	102	15	2	07/10/96	07/11/96	13:22:		
SA Smear	A-050A	Ceiling	103	25	10	07/10/96	07/11/96	13:24:		
SA Smear	A-050A	East Wall	104	2	8	07/10/96	07/11/96	13:27:		
SA Smear	A-050A	East Wall	105	2	15	07/10/96	07/11/96	13:29:		
SA Smear	A-050A	East Wall	106	8	4	07/10/96	07/11/96	13:31:		
SA Smear	A-050A	East Wall	107	12	1	07/10/96	07/11/96	13:33:		
SA Smear	A-050A	Floors	108	3	10	07/10/96	07/11/96	13:35:		
SA Smear	A-050A	Floors	109	3	25	07/10/96	07/11/96	13:37:		
SA Smear	A-050A	Floors	110	13	27	07/10/96	07/11/96	13:39:		
SA Smear	A-050A	Floors	111	15	15	07/10/96	07/11/96	13:42:		
SA Smear	A-050A	North Wall	112	2	21	07/10/96	07/11/96	13:44:		
SA Smear	A-050A	North Wall	113	3	12	07/10/96	07/11/96	13:46:		
SA Smear	A-050A	North Wall	114	20	9	07/10/96	07/11/96	13:48:		
SA Smear	A-050A	North Wall	115	10	10	07/10/96	07/11/96	13:50:		
SA Smear	A-050A	South Wall	116	2	7	07/10/96	07/11/96	13:52:		
SA Smear	A-050A	South Wall	117	2	14	07/10/96	07/11/96	13:54:		
SA Smear	A-050A	South Wall	118	2	25	07/10/96	07/11/96	13:56:		
SA Smear	A-050A	South Wall	119	2	19	07/10/96	07/11/96	13:59:		
SA Smear	A-050A	West Wall	120	5	8	07/10/96	07/11/96	14:01:		
SA Smear	A-050A	West Wall	121	8	11	07/10/96	07/11/96	14:03:		
SA Smear	A-050A	West Wall	122	3	10	07/10/96	07/11/96	14:05:		
SA Smear	A-050A	West Wall	123	2	10	07/10/96	07/11/96	14:07:		

TABLE A1 Building 310 Characterization Sample Labels

			Coordinates (feet)				Count	
Tuna	Room	Location	No.	up	right	Sample Date	Date	time
Туре		Pipes 1	124	Horizontal	& Vertical	07/11/96	07/11/96	15:39:19
LA Smear	A-062A	Tank 1	125	Entire	Tank	07/11/96	07/11/96	15:41:27
LA Smear	A-062A	Pipes 1	126	12	3	07/11/96	07/11/96	15:43:35
SA Smear	A-062A		127	10	3	07/11/96	07/11/96	15:45:43
SA Smear	A-062A	Pipes 1	128	N5	3	07/11/96	07/11/96	15:47:51
SA Smear	A-062A	Tank 1	129	W6	8	07/11/96	07/11/96	15:49:59
SA Smear	A-062A	Tank 1			2	07/11/96	07/11/96	15:52:0
SA Smear	A-062A	Ceiling	130	7	10	07/11/96	07/11/96	15:54:1
SA Smear	A-062A	Ceiling	131		NA NA	Onlino		
SA Smear	A-062A	East Wall	132	NA	NA NA			
SA Smear	A-062A	East Wall	133	NA				
SA Smear	A-062A	East Wall	134	NA	NA			
SA Smear	A-062A	East Wall	135	NA	NA	07/11/06	07/11/96	15:56:2
SA Smear	A-062A	Floors	136	12	4	07/11/96	07/11/96	15:58:3
SA Smear	A-062A	Floors	137	7	3	07/11/96	07/11/96	16:00:3
SA Smear	A-062A	Floors	138	12	14	07/11/96		16:02:4
SA Smear	A-062A	Floors	139	3	14	07/11/96	07/11/96	16:04:5
SA Smear	A-062A	North Wall	140	3	5	07/11/96	07/11/96	16:04:.
SA Smear	A-062A	North Wall	141	2	10	07/11/96	07/11/96	
SA Smear	A-062A	North Wall	142	2	10	07/11/96	07/11/96	16:09:
SA Smear	A-062A	North Wall	143	8	11	07/11/96	07/11/96	16:11:
SA Smear	A-062A	South Wall	144	14	2	07/11/96	07/11/96	16:13:
SA Smear	A-062A	South Wall	145	4	4	07/11/96	07/11/96	16:15:
SA Smear	A-062A	South Wall	146	12	8	07/11/96	07/11/96	16:17:
SA Smear	A-062A	South Wall	147	3	0	07/11/96	07/11/96	16:19:
SA Smear	A-062A	West Wall	148	8	12	07/11/96	07/11/96	16:21:
SA Smear	A-062A	West Wall	149	2	2	07/11/96	07/11/96	16:24:
	A-062A	West Wall	150	6	6	07/11/96	07/11/96	16:26
SA Smear SA Smear	A-062A	West Wall	151	4	14	07/11/96	07/11/96	16:28:
		Ceiling	152	5	12	07/11/96	07/11/96	14:09
SA Smear	A-068A	Ceiling	153	5	22	07/11/96	07/11/96	14:11
SA Smear	A-068A	East Wall	154	12	30	07/11/96	07/11/96	14:13
SA Smear	A-068A	East Wall	155	8	27	07/11/96	07/11/96	14:16
SA Smear	A-068A		156	3	18	07/11/96	07/11/96	14:18
SA Smear	A-068A	East Wall	157	10	2	07/11/96	07/11/96	14:20
SA Smear	A-068A	East Wall		6	12	07/11/96	07/11/96	14:22
SA Smear	A-068A	Floors	158		5	07/11/96	07/11/96	14:24
SA Smear	A-068A	Floors	159	12	28	07/11/96	07/11/96	14:26
SA Smear	A-068A	Floors	160	10	28	07/11/96	07/11/96	14:28
SA Smear	A-068A	Floors	161	4		07/11/96	07/11/96	14:3
SA Smear	A-068A	North Wall	162	10	15	07/11/96	07/11/96	14:3:
SA Smear	A-068A	North Wall	163	6	4		07/11/96	14:3:
SA Smear	A-068A	North Wall	164	2	2	07/11/96		14:3
SA Smear	A-068A	North Wall	165	2	10	07/11/96	07/11/96	14.3

TABLE A1 Building 310 Characterization Sample Labels

			ra-Santong	Coordinat	tes (feet)		Count		
Туре	Room	Location	No.	up	right	Sample Date	Date	time	
SA Smear	A-068A	South Wall	166	2	2	07/11/96	07/11/96	14:39:3	
SA Smear	A-068A	South Wall	167	5	12	07/11/96	07/11/96	14:41:4	
SA Smear	A-068A	South Wall	168	6	11	07/11/96	07/11/96	14:43:4	
SA Smear	A-068A	South Wall	169	4	16	07/11/96	07/11/96	14:45:5	
SA Smear	A-068A	West Wall	170	10	10	07/11/96	07/11/96	14:48:0	
SA Smear	A-068A	West Wall	171	3	0	07/11/96	07/11/96	14:50:1	
SA Smear	A-068A	West Wall	172	11	5	07/11/96	07/11/96	14:52:2	
SA Smear	A-068A	West Wall	173	4	17	07/11/96	07/11/96	14:54:2	
SA Smear	Tunnel	Floors #1	174	Entrance	from 310	08/06/96	08/08/96	13:36:3	
SA Smear	Tunnel	Floors #2	175	3	from 310	08/06/96	08/08/96	13:38:4	
SA Smear	Tunnel	Floors #3	176	15	from 310	08/06/96	08/08/96	13:40:5	
SA Smear	Tunnel	Floors #4	177	25	from 310	08/06/96	08/08/96	13:42:5	
SA Smear	Tunnel	Floors #5	178	35	from 310	08/06/96	08/08/96	13:45:0	
SA Smear	Tunnel	Floors #6	179	45	from 310	08/06/96	08/08/96	13:47:1	
SA Smear	Tunnel	Floors #7	180	55	from 310	08/06/96	08/08/96	13:49:2	
SA Smear	Tunnel	Floors #8	181	65	from 310	08/06/96	08/08/96	13:51:3	
SA Smear	Tunnel	Floors #9	182	75	from 310	08/06/96	08/08/96	13:53:3	
SA Smear	Tunnel	Floors #10	183	85	from 310	08/06/96	08/08/96	13:55:4	
LA Smear	Tunnel	Pipes #1	184	0 to 3	from 310	08/06/96	08/20/96	15:45:5	
LA Smear	Tunnel	Pipes #2	185	3	from 310	08/06/96	08/08/96	10:50:4	
LA Smear	Tunnel	Pipes #3	186	15	from 310	08/06/96	08/08/96	10:55:3	
LA Smear	Tunnel	Pipes #4	187	25	from 310	08/06/96	08/12/96	11:24:0	
LA Smear	Tunnel	Pipes #6	188	45	from 310	08/06/96	08/12/96	11:16:0	
LA Smear	Tunnel	Pipes #5	189	35	from 310	08/06/96	08/12/96	11:20:4	
LA Smear	Tunnel	Pipes #7	190	55	from 310	08/06/96	08/12/96	11:12:4	
LA Smear	Tunnel	Pipes #8	191	65	from 310	08/06/96	08/12/96	11:27:0	
LA Smear	Tunnel	Pipes #9	192	75	from 310	08/06/96	08/12/96	11:30:5	
LA Smear	Tunnel	Pipes #10	193	85	from 310	08/06/96	08/12/96	11:34:1	
Air	A-026A	Period 1	194			07/03/96	07/08/96	11:50:4	
Air	A-038A	Period 1	195			07/03/96	07/08/96	12:00:5	
Air	A-050A	Period 1	196			no ai	ir sample colle	cted	
Air	A-062A	Period 1	197			07/03/96	07/08/96	12:10:	
Air	A-026A	Period 2	198			07/09/96	07/15/96	14:15:4	
Air	A-038A	Period 2	199			07/09/96	07/15/96	14:25:5	
Air	A-050A	Period 2	200			07/09/96	07/15/96	14:36:0	
Air	A-062A	Period 2	201			07/09/96	07/15/96	14:46:	
Air	A-026A	Period 3	202			07/12/96	07/22/96	14:43:0	
Air	A-038A	Period 3	203			07/12/96	07/22/96	14:53:	
Air	A-050A	Period 3	204			07/12/96	07/22/96	15:03:1	
Air	A-062A	Period 3	205			07/12/96	07/22/96	15:13:2	

TABLE A1 Building 310 Characterization Sample Labels

Carlo C				Coordinate	es (feet)		Coun	it
Туре	Room	Location	No.	up	right	Sample Date	Date	time
	A-026A	Period 4	206		c 1089 ma	07/19/96	07/29/96	10:05:16
Air	A-026A A-038A	Period 4	207			07/19/96	07/29/96	10:15:24
Air	A-050A	Period 4	208			07/19/96	07/29/96	10:25:3
Air	A-062A	Period 4	209			07/19/96	07/29/96	10:35:4
Air	A-068A	cabinet	210			07/16/96	07/16/96	17:29:1
LA Smear		wood skids	211	two		07/16/96	07/16/96	17:31:2
LA Smear	A-068A	doors	212			07/16/96	07/16/96	17:33:3
LA Smear	A-068A		213	w/rad st	ickers	07/16/96	07/16/96	17:35:3
LA Smear	A-068A	pump	214	two		07/16/96	07/16/96	17:37:4
LA Smear	A-068A	scrub buckets	215			07/16/96	07/16/96	17:39:5
LA Smear	A-068A	hose	216	under s	helves	07/16/96	07/16/96	17:42:0
LA Smear	A-068A	pumps		under		07/16/96	07/16/96	17:44:1
LA Smear	A-068A	pumps	217	under	grate	07/16/96	07/16/96	17:46:1
LA Smear	A-068A	shelves	218	under	grate	07/16/96	07/16/96	17:48:2
LA Smear	A-068A	ladder	219	unuei	grate	07/16/96	07/16/96	17:50:
LA Smear	A-068A	misc. scrap	220	7 from N	0 from E	07/22/96	07/22/96	13:16:
LA Smear	A-068A	E Wall & Floor	221	/ Irom N	o nom E	07/16/96	07/16/96	17:52:
LA Smear	A-068A	drum	222				07/22/96	13:21:
LA Smear	A-050A	Floor; tar paper	223	8.7	0	07/22/96	07/22/96	13:23:
LA Smear	A-050A	Floor; tar paper	224	11.2	2.7	07/22/96	07/22/96	13:25:
LA Smear	A-050A	Floor; tar paper	225	14.7	5.7	07/22/96	07/22/96	13:27:
LA Smear	A-050A	Floor; tar paper	226	13.7	12.7	07/22/96		13:29:
LA Smear	A-050A	Floor; tar paper	227	13.7	17.1	07/22/96	07/22/96	13:31
LA Smear	A-050A	Floor; tar paper	228	11.7	9.7	07/22/96	07/22/96	13:33
LA Smear	A-050A	Floor; tar paper	229	10.7	6.7	07/22/96	07/22/96	
LA Smear	A-050A	Floor; tar paper	230	10.7	11.7	07/22/96	07/22/96	13:35
LA Smear	A-068A	pump - rim	231	w/rad	stickers	07/22/96	07/22/96	13:38
Brick	A-050A	South Wall	232	5	18 from E	07/22/96	07/23/96	11:44
LA Smear	A-062A	Tank 1	233	Contamir	nated Spots	07/23/96	07/23/96	16:20
Brick	A-050A	South Wall	234	5	9	07/22/96	07/23/96	11:46
Brick	A-026A	South Wall	235	8	11	07/22/96	07/23/96	11:48
LA Smear	A-026A	pump	236	2 Sum	p pumps	07/22/96	07/23/96	11:51
Brick	A-038A	South Wall	237	8	9	07/22/96	07/23/96	11:53
Brick	A-050A	South Wall	238	2	9 from E	07/22/96	07/23/96	11:55
Brick	A-062A	South Wall	239	7	18	07/22/96	07/23/96	11:5
	A-002A A-026A	South Wall	240	7	19	07/22/96	07/23/96	11:59
Brick	A-062A	South Wall	241	7	25 from E	07/22/96	07/23/96	12:0
Brick	A-062A A-038A	South Wall	242	9	18 from E	07/22/96	07/23/96	12:0
Brick		Tank 4	243	Contami	nated Spots	07/23/96	07/23/96	16:2
LA Smear	A-050A	East Wall	243	9	7	07/23/96	07/23/96	16:2
SA Smear	A-026A	North Wall	245	2	9.58	07/23/96	07/23/96	16:2
SA Smear	A-026A				13	07/23/96	07/23/96	16:2
SA Smear						07/23/96	07/23/96	16:3
	A-026A A-026A	North Wall South Wall	246 247	2 1.25	13 5.25			

TABLE A1 Building 310 Characterization Sample Labels

				Coordin	ates (feet)		Count	
Туре	Room	Location	No.	up	right	Sample Date	Date	time
SA Smear	A-062A	North Wall	248	8.67	8.5	07/23/96	07/23/96	16:32:4
SA Smear	A-062A	South Wall	249	1.75	8.58	07/23/96	07/23/96	16:34:5
SA Smear	A-062A	West Wall	250	0.75	6.25	07/23/96	07/23/96	16:37:0
SA Smear	A-050A	South Wall	251	7.58	9	07/23/96	07/23/96	16:39:1
SA Smear	A-050A	South Wall	252	7.58	15	07/23/96	07/23/96	16:41:2
SA Smear	A-068A	South Wall	253	1.5	6.17	07/23/96	07/23/96	16:43:2
SA Smear	A-068A	West Wall	254	2	4	07/23/96	07/23/96	16:45:3
SA Smear	A-068A	East Wall	255	1	11	07/23/96	07/23/96	16:47:4
LA Smear	A-068A	pump, etc	256	Internal	SE Corner	07/23/96	07/23/96	16:49:5
LA Smear	A-068A	pump #2	257	Internal	by E Wall	07/23/96	07/23/96	16:51:5
LA Smear	A-068A	pump #3	258	Internal	by E Wall	07/23/96	07/23/96	16:54:0
LA Smear	A-068A	Container #4	259	Internal	by E Wall	07/23/96	07/23/96	16:56:1
LA Smear	A-068A	pumps-2 #5	260	Internal	by N Wall	07/23/96	07/23/96	16:58:2
LA Smear	A-068A	pump #6	261	Internal	by W Wall	07/23/96	07/23/96	17:00:3
Brick	A-038A	South Wall	262	0.83	7	08/05/96	08/06/96	15:54:1
Brick	A-038A	South Wall	263	6	24	08/05/96	08/06/96	15:56:2
Brick	A-038A	South Wall	264	2	17	08/05/96	08/06/96	15:58:2
Brick	A-038A	South Wall	265	2	18	08/05/96	08/06/96	16:00:3
Air	A-026A	Period 5	266			07/26/96	08/15/96	18:26:4
Air	A-038A	Period 5	267			07/26/96	08/15/96	18:36:5
Air	A-050A	Period 5	268			07/26/96	08/15/96	18:47:0
Air	A-062A	Period 5	269			07/26/96	08/15/96	18:57:1
				1110				
LA Smear LA Smear	A-038A A-038A	Tank 5 Pipe 1.67 from	271 270	W3 11.83	2.67 13.75	08/06/96 08/06/96	09/18/96 09/18/96	12:25:1
7-9		N Wall	2,0	11.03	15.75	00/00/90	03/18/30	12.27.2
LA Smear	A-038A	Tank 5	272	W8.25	2.67	08/06/96	09/18/96	12:27:2
LA Smear	A-038A	North Wall	273	3 12.8	to 15.8	09/19/96	09/19/96	15:54:4
Water	A-038A	Floor	274	Drum of m	nud & water	9/12/96	9/15/96	
LA Smear	A-038A	Pipe 1.75" from N. Wall	275	11.83	14	09/19/96	09/19/96	15:51:0
Mud	A-038A	Floor	276	Drum of m	nud & water	9/12/96	9/18/96	00:53:0
LA Smear	A-038A	Pipe 1.75" from N. Wall	277	13.83	14	09/19/96	09/19/96	15:46:2
LA Smear	A-050A	LA Smear	500	lower		07/10/96	07/11/96	15:36:2
LA Smear	A-050A	West Wall	501			07/10/96	07/11/96	15:40:5
LA Smear	A-050A	Floor	503	Under Grate	Tank 4	07/14/96	07/15/96	17:18:2
LA Smear	A-050A	West Wall	502	Electr	ric Box	07/14/96	07/15/96	17:25:
LA Smear	A-062A	Grate	504	all		08/07/96	08/08/96	11:13:1
LA Smear	A-050A	Grate	505	all		08/07/96	08/08/96	11:22:3
LA Smear	A-038A	Grate	506		by Tank 7	08/07/96	08/08/96	11:29:
LA Smear	A-038A	Grate	507		of Tank 6	08/07/96	08/08/96	11:33:0
LA Smear	A-038A	Grate	508	all		08/07/96	08/08/96	11:36:1

TABLE A1 Building 310 Characterization Sample Labels

				Coordinat	es (feet)		Cour	nt
			-			Sample	Date	time
Туре	Room	Location	No.	up	right	Date	Date	
LA Smear	A-026A	Grate	509	all		08/07/96	08/08/96	11:38:56
LA Smear	A-050A	Grate	510	Hot Spot b	y Tank 4	08/07/96	08/08/96	11:41:39
LA Smear	A-050A	Tank #4	511	Internal	DABRAS	07/22/96	08/12/96	08:54:00
LA Smear	A-050A	Tank #2	512	Internal	DABRAS	07/22/96	08/12/96	08:59:47
LA Smear	A-062A	Tank #1	513	Bottom of ta	nk-external	07/22/96	08/12/96	09:06:10
LA Smear	A-062A	Tank #1	514	Internal	DABRAS	07/22/96	08/12/96	09:09:39
LA Smear	A-038A	Tank #5	515	Internal	DABRAS	07/22/96	08/12/96	09:17:04
LA Smear	A-038A	Tank #6	516	Internal	DABRAS	07/22/96	08/12/96	09:23:05
LA Smear	A-050A	Tank #3	517	Internal	DABRAS	07/22/96	08/12/96	09:29:31
LA Smear	A-026A	Tank #8	518	Internal	DABRAS	07/22/96	08/12/96	09:34:11
LA Smear	A-026A	Tank #10	520	Internal	DABRAS	07/22/96	08/12/96	09:50:34
LA Smear	A-038A	Tank #7	521	Internal	DABRAS	07/22/96	08/12/96	09:53:51
LA Smear	A-026A	Tank #9	519	Internal	DABRAS	07/22/96	08/12/96	10:23:43
	A-038A	Floor	522	9	1	08/06/96	08/14/96	09:43:15
Tarpaper-t	A-038A	Floor	523	9	1	08/06/96	08/14/96	09:45:56
Tarpaper-b	A-038A	Floor	524	9.42	10	08/06/96	08/14/96	09:53:09
Tarpaper-t Tarpaper-b	A-038A	Floor	525	9.42	10	08/06/96	08/14/96	10:17:33
• •	A-038A	Floor	526	9.33	19	08/06/96	08/14/96	10:25:0
Tarpaper-t	A-038A	Floor	527	9.33	19	08/06/96	08/14/96	10:32:4
Tarpaper-b Tarpaper-t	A-038A	Floor	528	9.42	25	08/06/96	08/14/96	10:35:3
Tarpaper-b	A-038A	Floor	529	9.42	25	08/06/96	08/14/96	10:38:2
	A-038A	Floor	530	9	1	08/06/96	08/14/96	10:44:0
LA Smear	A-038A	Floor	531	9.42	10	08/06/96	08/14/96	10:52:2
LA Smear	A-038A	Floor	532	9.33	19	08/06/96	08/14/96	10:58:1
LA Smear	A-038A A-038A	Floor	533	9.42	25	08/06/96	08/14/96	11:01:5
LA Smear			534	Internal	from 310	08/15/96	08/15/96	14:13:5
Internal Smear	B-007	Pipe	534		al to 310	08/15/96	08/15/96	14:26:0
Internal Smear	B-007	Pipe			DABRAS	07/22/96	08/19/96	15:54:
LA Smear	A-068A	pump-cont	536	Internal	DABRAS	01122190	00.17/70	

APPENDIX B: Smear & Brick Sample Data

TABLE B1 Smear Sample Data from Tennelec for 310 Retention Tanks

			990	Coordinat	es (feet)	dis/min		
Туре	Room	Location	No.	up	right	Alpha	Beta	
	A-026A	Pipes 10	1	Horizontal	& Vertical	5.19 ± 7.08	27.2 ± 20.5	
LA Smear	A-026A	Pipes 8	2	Horizontal	& Vertical	3.10 ± 5.78	72.5 ± 25.1	
LA Smear	A-026A	Pipes 9	3	Horizontal	& Vertical	7.27 ± 8.17	7.0 ± 18.2	
LA Smear		Tank 10	4	Entire	Tank	9.35 ± 9.14	72.5 ± 25.1	
LA Smear	A-026A A-026A	Tank 8	5	Entire	Tank	11.44 ± 10.01	27.2 ± 20.5	
LA Smear	A-026A A-026A	Tank 9	6	Entire	Tank	28.10 ± 15.28	103.4 ± 27.5	
LA Smear	A-026A A-026A	Pipes 10	7	12	3	3.10 ± 5.78	30.8 ± 20.9	
SA Smear		Pipes 10	8	10	3	23.94 ± 14.15	17.7 ± 19.5	
SA Smear	A-026A A-026A	Pipes 8	9	N12	3	7.27 ± 8.17	27.2 ± 20.5	
SA Smear	A-026A A-026A	Pipes 8	10	N8	3	1.02 ± 4.09	-7.3 ± 16.3	
SA Smear	A-026A A-026A	Pipes 9	11	12	3	3.10 ± 5.78	16.5 ± 19.3	
SA Smear	A-026A	Pipes 9	12	10	3	5.19 ± 7.08	18.9 ± 19.6	
SA Smear	A-026A	Pipes	13	10	3	3.10 ± 5.78	1.0 ± 17.4	
Internal Smear SA Smear	A-026A	Tank 10	14	E7	12	1.02 ± 4.09	23.6 ± 20.	
	A-026A	Tank 10	15	N8	3	5.19 ± 7.08	$23.6 \pm 20.$	
SA Smear SA Smear	A-026A	Tank 8	16	E7	4	9.35 ± 9.14	40.3 ± 22.0	
	A-026A	Tank 8	17	S6	5	3.10 ± 5.78	4.6 ± 17.9	
SA Smear SA Smear	A-026A	Tank 9	18	N4	3	1.02 ± 4.09	8.2 ± 18.3	
SA Smear	A-026A	Tank 9	19	W5	3	7.27 ± 8.17	$26.0 \pm 20.$	
SA Smear	A-026A	Ceiling	20	8	24	1.02 ± 4.09	2.2 ± 17.5	
SA Smear	A-026A	Ceiling	21	8	12	-1.06 ± 4.09	-12.1 ± 15	
SA Smear	A-026A	East Wall	22	3	10	19.77 ± 12.92	$15.3 \pm 19.$	
SA Smear	A-026A	East Wall	23	12	14	5.19 ± 7.08	4.6 ± 17.	
SA Smear	A-026A	East Wall	24	3	14	1.02 ± 4.09	1.0 ± 17.	
SA Smear	A-026A	East Wall	25	2	4	32.27 ± 16.34	104.6 ± 27	
SA Smear	A-026A	East Wall	244	9	7	-1.02 ± 4.09	-8.2 ± 16.	
SA Smear	A-026A	Floors	26	12	12	5.19 ± 7.08	24.8 ± 20	
SA Smear	A-026A	Floors	27	6	22	-1.06 ± 4.09	1.0 ± 17 .	
SA Smear	A-026A	Floors	28	3	15	-1.06 ± 4.09	15.3 ± 19	
SA Smear	A-026A	Floors	29	3	3	1.02 ± 4.09	14.1 ± 19	
SA Smear	A-026A	North Wall	30	4	22	5.19 ± 7.08	47.5 ± 22	
SA Smear	A-026A	North Wall	31	4	13	3.10 ± 5.78	10.5 ± 18	
SA Smear	A-026A	North Wall	32	10	25	1.02 ± 4.09	-0.2 ± 17	
SA Smear	A-026A	North Wall	33	12	4	11.44 ± 10.01	71.3 ± 25	
SA Smear	A-026A	North Wall	245	2	9.58	3.15 ± 5.78	6.1 ± 18	
SA Smear	A-026A	North Wall	246	2	13	-1.02 ± 4.0	15.7 ± 19	
SA Smear	A-026A	South Wall	34	2	5	28.10 ± 15.28	57.0 ± 23	
SA Smear	A-026A	South Wall	35	12	25	7.27 ± 8.17	-0.2 ± 17	
SA Smear	A-026A	South Wall	36	8	12	13.52 ± 10.81	-0.2 ± 1	
SA Smear	A-026A	South Wall	37	8	2	5.19 ± 7.08	17.7 ± 1	
SA Smear	A-026A	South Wall	247	1.25	5.25	3.15 ± 5.78	-12.9 ± 1	
SA Smear	A-026A	West Wall	38	3	15	-1.06 ± 4.09	-7.3 ± 10	
SA Silical	11 02011		39	16	6	-1.06 ± 4.09	-2.5 ± 1	

TABLE B1 Smear Sample Data from Tennelec for 310 Retention Tanks

							Coordinates (feet)		dis/n	nin
Туре	Room	n Location	No.	up	right	Alpha	Beta			
SA Smear	A-026A	West Wall	40	2	12	-1.06 ± 4.09	1.0 ± 17.4			
SA Smear	A-026A	West Wall	41	6	8	-1.06 ± 4.09	-3.7 ± 16.8			
LA Smear	A-026A	pump	236	2 Sump	pumps	-1.02 ± 4.09	0.2 ± 17.2			
Brick	A-026A	South Wall	235	8	11	-1.02 ± 4.09	8.5 ± 18.3			
Brick	A-026A	South Wall	240	7	19	1.06 ± 4.09	9.7 ± 18.5			
SA Smear	A-038A	Pipes 5	48	13	2	2.98 ± 5.78	9.2 ± 18.6			
SA Smear	A-038A	Pipes 5	49	11	0	19.65 ± 12.92	98.4 ± 27.5			
SA Smear	A-038A	Pipes 6	50	13	2	9.23 ± 9.14	5.6 ± 18.2			
SA Smear	A-038A	Pipes 6	51	11	0	11.31 ± 10.01	24.6 ± 20.4			
SA Smear	A-038A	Pipes 7	52	13	2	2.98 ± 5.78	-9.9 ± 16.1			
SA Smear	A-038A	Pipes 7	53	11	0	13.40 ± 10.81	48.4 ± 22.9			
Internal Smear	A-038A	Pipes	54	10	3	57.15 ± 21.61	266.3 ± 39.0			
SA Smear	A-038A	Tank 5	55	W5.5	5.33	5.06 ± 7.08	18.7 ± 19.7			
SA Smear	A-038A	Tank 5	56	E5.6	5.33	-1.19 ± 4.09	-6.3 ± 16.6			
LA Smear	A-038A	Tank 5	270	W3	2.67	8,436.77 ± 259.86	5,736.0± 162.			
LA Smear	A-038A	Tank 5	270	W3	2.67	$7,757.77 \pm 249.18$	$4,238.3 \pm 140.$			
LA Smear	A-038A	Tank 5	272	E8.25	2.67	826.42 ± 81.36	1,649.1 ± 88.0			
LA Smear	A-038A	Tank 5	272	E8.25	2.67	734.85 ± 76.72	1,353.8 ± 80.4			
SA Smear	A-038A	Tank 6	57	E5.5	5.33	5.06 ± 7.08	13.9 ± 19.2			
SA Smear	A-038A	Tank 6	58	W5.5	5.33	11.31 ± 10.01	6.8 ± 18.3			
SA Smear	A-038A	Tank 7	59	E5.5	5.33	-1.19 ± 4.09	6.8 ± 18.3			
SA Smear	A-038A	Tank 7	60	W5.5	5.33	7.15 ± 8.17	17.5 ± 19.6			
SA Smear	A-038A	Ceiling	61	4	10	-0.98 ± 4.09	2.3 ± 17.7			
SA Smear	A-038A	Ceiling	62	center		-0.98 ± 4.09	11.8 ± 18.9			
SA Smear	A-038A	East Wall	63	2	3.5	1.10 ± 4.09	-9.6 ± 16.1			
SA Smear	A-038A	East Wall	64	7	2	7.35 ± 8.17	24.9 ± 20.4			
SA Smear	A-038A	East Wall	65	7	6	1.10 ± 4.09	-4.9 ± 16.8			
SA Smear	A-038A	East Wall	66	2	10.67	-0.98 ± 4.09	10.6 ± 18.7			
SA Smear	A-038A	Floors	67	4	24	19.85 ± 12.92	119.0 ± 29.1			
SA Smear	A-038A	Floors	68	13.75	18	-0.98 ± 4.09	28.5 ± 20.8			
SA Smear	A-038A	Floors	69	13.75	11	9.44 ± 9.13	17.8 ± 19.6			
SA Smear	A-038A	Floors	70	13.75	1.33	9.44 ± 9.13	97.5 ± 27.4			
SA Smear	A-038A	North Wall	71	2	8.58	3.19 ± 5.78	20.1 ± 19.9			
SA Smear	A-038A	North Wall	72	7	15	-0.98 ± 4.09	-15.6 ± 15.2			
SA Smear	A-038A	North Wall	73	2	19.67	1.10 ± 4.09	16.6 ± 19.5			
SA Smear	A-038A	North Wall	74	7	24	1.10 ± 4.09	9.4 ± 18.6			
SA Smear	A-038A	South Wall	75	2	8.58	-0.98 ± 4.09				
SA Smear	A-038A	South Wall	76	2	19.67		-10.8 ± 15.9			
SA Smear	A-038A	South Wall	77	10	0.58	1.10 ± 4.09	7.0 ± 18.3			
SA Smear	A-038A	South Wall				-0.98 ± 4.09	13.0 ± 19.0			
SA Smear	A-038A	West Wall	78 79	6	24	-0.98 ± 4.09	-4.9 ± 16.8			
SA Smear	A-038A	West Wall		2	2	3.19 ± 5.78	4.7 ± 18.0			
SA Smear	A-038A A-038A	West Wall	80	6.67	6.67	3.19 ± 5.78	-2.5 ± 17.1			
or offical	M-030A	west wall	81	2	9.75	49.02 ± 20.01	28.5 ± 20.8			

TABLE B1 Smear Sample Data from Tennelec for 310 Retention Tanks

	-10			Coordinate	es (feet)	dis/min		
Туре	Room	Location	No.	up	right	Alpha	Beta	
Brick	A-038A	South Wall	237	8	9	9.40 ± 9.14	10.9 ± 18.6	
Brick	A-038A	South Wall	242	9	18 from E	-1.02 ± 4.09	-7.0 ± 16.3	
Brick	A-038A	South Wall	262	0.83	7	3.19 ± 5.78	-1.3 ± 17.2	
Brick	A-038A	South Wall	263	6	24	1.10 ± 4.09	-8.4 ± 16.3	
Brick	A-038A	South Wall	264	2	17	1.10 ± 4.09	2.3 ± 17.7	
Brick	A-038A	South Wall	265	2	18	1.10 ± 4.09	14.2 ± 19.2	
LA Smear	A-038A	Pipe 1.67 from N Wall	271	11.83	13.75	1,295.17 ±101.84	1,334.8 ±80.	
LA Smear	A038A	Pipe 1.67 from N Wall	271	11.83	13.75	772.35 ± 78.65	618.01 ±55.	
Water	A-038A	Floor	274	Drum of mu	id & water	0.85 ±0.27	3.8 ±1.8	
Mud	A-038A	Floor	276	Drum of mu	id & water	16.11 ± 0.56	116.6 ± 2.1	
LA Smear	A-050A	Pipes 2	83	Horizontal	& Vertical	-0.75 ± 4.09	6.8 ± 18.2	
LA Smear	A-050A	Pipes 3	84	Horizontal	& Vertical	22.17 ± 13.55	54.4 ± 23.4	
LA Smear	A-050A	Pipes 4	85	Horizontal	& Vertical	-0.75 ± 4.09	44.9 ± 22.4	
LA Smear	A-050A	Tank 2	86	Entire	Tank	7.58 ± 8.17	61.6 ± 24.1	
LA Smear	A-050A	Tank 3	87	Entire	Tank	5.50 ± 7.08	67.5 ± 24.6	
LA Smear	A-050A	Tank 4	88	Entire	Tank	49.25 ± 20.01	$380.6 \pm 45.$	
SA Smear	A-050A	Pipes 2	89	10	3	1.33 ± 4.09	-1.5 ± 17 .	
SA Smear	A-050A	Pipes 2	90	12	3	15.92 ± 11.55	18.7 ± 19.	
SA Smear	A-050A	Pipes 3	91	10	3	-0.75 ± 4.09	3.2 ± 17.7	
SA Smear	A-050A	Pipes 3	92	12	3	1.33 ± 4.09	-2.7 ± 16.9	
SA Smear	A-050A	Pipes 4	93	12	3	3.42 ± 5.78	$16.3 \pm 19.$	
SA Smear	A-050A	Pipes 4	94	10	3	15.92 ± 11.55	-2.7 ± 16.9	
Internal Smear	A-050A	Pipes	95	9	3	1.33 ± 4.09	$22.3 \pm 20.$	
SA Smear	A-050A	Tank 2	96	S8	3	13.83 ± 10.81	$22.3 \pm 20.$	
SA Smear	A-050A	Tank 2	97	N8	3	1.33 ± 4.09	8.0 ± 18.3	
SA Smear	A-050A	Tank 3	98	S8	3	5.50 ± 7.08	-13.4 ± 15	
SA Smear	A-050A	Tank 3	99	N8	3	1.33 ± 4.09	-2.7 ± 16	
SA Smear	A-050A	Tank 4	100	N8	3	3.42 ± 5.78	-5.1 ± 16.	
SA Smear	A-050A	Tank 4	101	S8	3	9.67 ± 9.13	62.8 ± 24	
LA Smear	A-050A	Tank 4	243	Contamir	nated Spots	61.48 ± 22.37	458.5 ± 48	
SA Smear	A-050A	Ceiling	102	15	2	5.50 ± 7.08	0.9 ± 17 .	
SA Smear	A-050A	Ceiling	103	25	10	-0.75 ± 4.09	-8.7 ± 16	
SA Smear	A-050A	East Wall	104	2	8	-0.75 ± 4.09	-17.0 ± 14	
SA Smear	A-050A A-050A	East Wall	105	2	15	15.92 ± 11.55	-3.9 ± 16	
	A-050A A-050A	East Wall	106	8	4	11.75 ± 10.01	-15.8 ± 15	
SA Smear SA Smear	A-050A A-050A	East Wall	107	12	1	1.33 ± 4.09	94.9 ± 27	
	A-050A	Floors	108	3	10	3.42 ± 5.78	19.9 ± 19	
SA Smear	A-050A	Floors	109	3	25	7.58 ± 8.17	81.8 ± 25	
SA Smear	A-050A A-050A	Floors	110	13	27	3.42 ± 5.78	46.1 ± 22	
SA Smear	A-050A A-050A	Floors	111	15	15	7.58 ± 8.17	78.2 ± 25	
SA Smear		North Wall	112	2	21	7.58 ± 8.17	14.0 ± 19	
SA Smear	A-050A	North Wall	113	3	12	7.58 ± 8.17	62.8 ± 24	
SA Smear	A-050A	Norui Wali	113			CONTRACTOR OF THE PARTY OF THE		

TABLE B1 Smear Sample Data from Tennelec for 310 Retention Tanks

				Coordinat	es (feet)	dis/	min
Туре	Room	Location	No.	up	right	Alpha	Beta
SA Smear	A-050A	North Wall	114	20	9	7.58 ± 8.17	3.2 ± 17.7
SA Smear	A-050A	North Wall	115	10	10	-0.75 ± 4.09	2.0 ± 17.5
SA Smear	A-050A	South Wall	116	2	7	3.42 ± 5.78	-7.5 ± 16.3
SA Smear	A-050A	South Wall	117	2	14	-0.75 ± 4.09	-3.9 ± 16.8
SA Smear	A-050A	South Wall	118	2	25	1.33 ± 4.09	-18.2 ± 14.7
SA Smear	A-050A	South Wall	119	2	19	3.42 ± 5.78	17.5 ± 19.5
SA Smear	A-050A	South Wall	251	7.58	9	1.06 ± 4.09	-3.4 ± 16.8
SA Smear	A-050A	South Wall	252	7.58	15	-1.02 ± 4.09	4.9 ± 17.9
SA Smear	A-050A	West Wall	120	5	8	3.42 ± 5.78	0.9 ± 17.4
SA Smear	A-050A	West Wall	121	8	11	-0.75 ± 4.09	-0.3 ± 17.2
SA Smear	A-050A	West Wall	122	3	10	3.42 ± 5.78	23.5 ± 20.1
SA Smear	A-050A	West Wall	123	2	10	1.33 ± 4.09	31.8 ± 21.1
LA Smear	A-050A	Floor; tar paper	223	8.7	0	34.71 ± 16.84	638.9 ± 56.7
LA Smear	A-050A	Floor; tar paper	224	11.2	2.7	20.13 ± 12.91	111.5 ± 28.3
LA Smear	A-050A	Floor; tar paper	225	14.7	5.7	9.71 ± 9.13	15.1 ± 19.0
LA Smear	A-050A	Floor; tar paper	226	13.7	12.7	3.46 ± 5.78	80.6 ± 25.7
LA Smear	A-050A	Floor; tar paper	227	13.7	17.1	-0.71 ± 4.09	7.9 ± 18.2
LA Smear	A-050A	Floor; tar paper	228	11.7	9.7	5.54 ± 7.08	24.6 ± 20.1
LA Smear	A-050A	Floor; tar paper	229	10.7	6.7	1.38 ± 4.09	57.9 ± 23.6
LA Smear	A-050A	Floor; tar paper	230	10.7	11.7	11.79 ± 10.00	115.1 ± 28.6
Brick	A-050A	South Wall	232	5	18 from E	-1.02 ± 4.09	-1.0 ± 17.1
Brick	A-050A	South Wall	234	5	9	1.06 ± 4.09	3.8 ± 17.7
Brick	A-050A	South Wall	238	2	9 from E	1.06 ± 4.09	9.7 ± 18.5
LA Smear	A-062A	Pipes 1	124	Horizontal	& Vertical	9.67 ± 9.13	104.4 ± 27.9
LA Smear	A-062A	Tank 1	125	Entire	Tank	1.33 ± 4.09	-2.7 ± 16.9
SA Smear	A-062A	Pipes 1	126	12	3	5.50 ± 7.08	12.8 ± 18.9
SA Smear	A-062A	Pipes 1	127	10	3	5.50 ± 7.08	-8.7 ± 16.1
SA Smear	A-062A	Tank 1	128	N5	3	1.33 ± 4.09	79.4 ± 25.7
SA Smear	A-062A	Tank 1	129	W6	8	-0.75 ± 4.09	11.6 ± 18.7
LA Smear	A-062A	Tank 1	233	Contaminated Spots	18 from E	111.48 ± 30.01	2,184.7 ±101
SA Smear	A-062A	Ceiling	130	7	2	-0.75 ± 4.09	0.9 ± 17.4
SA Smear	A-062A	Ceiling	131	7	10	-0.75 ± 4.09	-2.7 ± 16.9
SA Smear	A-062A	East Wall	132	NA	NA	There is no	
SA Smear	A-062A	East Wall	133	NA	NA	There is no	East Wall
SA Smear	A-062A	East Wall	134	NA	NA	There is no	East Wall
SA Smear	A-062A	East Wall	135	NA	NA	There is no	East Wall
SA Smear	A-062A	Floors	136	12	4	-0.75 ± 4.09	2.0 ± 17.5

TABLE B1 Smear Sample Data from Tennelec for 310 Retention Tanks

			09970	Coordinat	es (feet)	dis/m	dis/min		
Туре	Room	Location	No.	up	right	Alpha	Beta		
SA Smear	A-062A	Floors	137	7	3	11.75 ± 10.01	6.8 ± 18.2		
SA Smear	A-062A	Floors	138	12	14	-0.75 ± 4.09	8.0 ± 18.3		
SA Smear	A-062A	Floors	139	3	14	-0.75 ± 4.09	9.2 ± 18.5		
SA Smear	A-062A	North Wall	140	3	5	1.33 ± 4.09	6.8 ± 18.2		
SA Smear	A-062A	North Wall	141	2	10	-0.75 ± 4.09	-0.3 ± 17.2		
SA Smear	A-062A	North Wall	142	2	10	-0.75 ± 4.09	22.3 ± 20.0		
SA Smear	A-062A	North Wall	143	8	11	1.33 ± 4.09	-5.1 ± 16.6		
SA Smear	A-062A	North Wall	248	8.67	8.5	1.06 ± 4.09	-5.8 ± 16.4		
SA Smear	A-062A	South Wall	144	14	2	-0.75 ± 4.09	-1.5 ± 17.1		
SA Smear	A-062A	South Wall	145	4	4	-0.75 ± 4.09	-9.9 ± 15.9		
SA Smear	A-062A	South Wall	146	12	8	1.33 ± 4.09	6.8 ± 18.2		
SA Smear	A-062A	South Wall	147	3	0	3.42 ± 5.78	5.6 ± 18.0		
SA Smear	A-062A	South Wall	249	1.75	8.58	1.06 ± 4.09	6.1 ± 18.0		
SA Smear	A-062A	West Wall	148	. 8	12	11.44 ± 10.01	$217.7 \pm 36.$		
SA Smear	A-062A	West Wall	149	2	2	19.77 ± 12.92	545.1 ± 52.		
SA Smear	A-062A	West Wall	150	6	6	13.52 ± 10.81	409.4 ± 46.		
	A-062A	West Wall	151	4	14	15.60 ± 11.55	$165.3 \pm 32.$		
SA Smear SA Smear	A-062A	West Wall	250	0.75	6.25	55.23 ± 21.22	1,756.1 ± 9		
	A-062A	South Wall	239	7	18	3.15 ± 5.78	-4.6 ± 16.0		
Brick Brick	A-062A	South Wall	241	7	25 from E	1.06 ± 4.09	8.5 ± 18.3		
SA Smear	A-068A	Ceiling	152	5	12	-0.75 ± 4.09	-13.4 ± 15		
SA Smear	A-068A	Ceiling	153	5	22	-0.75 ± 4.09	2.0 ± 17.5		
SA Smear	A-068A	East Wall	154	12	30	1.33 ± 4.09	$-7.5 \pm 16.$		
SA Smear	A-068A	East Wall	155	8	27	-0.75 ± 4.09	-0.3 ± 17 .		
SA Smear	A-068A	East Wall	156	3	18	9.67 ± 9.13	-1.5 ± 17		
SA Smear	A-068A	East Wall	157	10	2	-0.75 ± 4.09	-8.7 ± 16		
SA Smear	A-068A	East Wall	255	1	11	13.56 ± 10.81	-24.8 ± 13		
LA Smear	A-068A	E Wall &	221	16.3	26.3	3.46 ± 5.78	4.4 ± 17.		
LA Smear	A-068A	E Wall & Floor	221	16.3	26.3	3.46 ± 5.78	-15.9 ± 14		
SA Smear	A-068A	Floors	158	6	12	-0.75 ± 4.09	-7.5 ± 16		
SA Smear	A-068A	Floors	159	12	5	-0.75 ± 4.09	-12.2 ± 15		
SA Smear	A-068A	Floors	160	10	28	-0.75 ± 4.09	4.4 ± 17.		
SA Smear	A-068A	Floors	161	4	21	-0.75 ± 4.09	-5.1 ± 16		
SA Smear	A-068A	North Wall	162	10	15	-0.75 ± 4.09	-11.0 ± 1		
SA Smear	A-068A	North Wall	163	6	4	-0.75 ± 4.09	-17.0 ± 1		
SA Smear	A-068A	North Wall	164	2	2	3.42 ± 5.78	-9.9 ± 15		
SA Smear	A-068A	North Wall	165	2	10	1.33 ± 4.09	-2.7 ± 16		
SA Smear	A-068A	South Wall	166	2	2	-0.75 ± 4.09	-14.6 ± 1		
SA Smear	A-068A	South Wall	167	5	12	1.33 ± 4.09	-8.7 ± 10		
SA Smear	A-068A	South Wall	168	6	11	1.33 ± 4.09	-12.2 ± 1		
	A-068A	South Wall	169	4	16	-0.75 ± 4.09	-3.9 ± 10		
SA Smear	A-068A	South Wall	253	1.5	6.17	1.06 ± 4.09	-2.2 ± 1		

TABLE B1 Smear Sample Data from Tennelec for 310 Retention Tanks

			1	Coordina	ates (feet)	dis/n	nin
Туре	Room	Location	No.	up	right	Alpha	Beta
SA Smear	A-068A	West Wall	170	10	10	1.33 ± 4.09	5.6 ± 18.0
SA Smear	A-068A	West Wall	171	3	0	1.33 ± 4.09	-13.4 ± 15.4
SA Smear	A-068A	West Wall	172	11	5	-0.75 ± 4.09	2.0 ± 17.5
SA Smear	A-068A	West Wall	173	4	17	1.33 ± 4.09	-15.8 ± 15.0
SA Smear	A-068A	West Wall	254	2	4	-1.02 ± 4.09	-14.1 ± 15.2
LA Smear	A-068A	cabinet	210			-1.10 ± 4.09	-0.4 ± 17.2
LA Smear	A-068A	wood skids	211	two		3.06 ± 5.78	-11.1 ± 15.7
LA Smear	A-068A	doors	212			-1.10 ± 4.09	4.3 ± 17.9
LA Smear	A-068A	pump	213	w/rad	stickers	0.98 ± 4.09	-12.3 ± 15.6
LA Smear	A-068A	scrub buckets	214	two ·	. 33	0.98 ± 4.09	-2.8 ± 16.9
LA Smear	A-068A	hose	215			-1.10 ± 4.09	4.3 ± 17.9
LA Smear	A-068A	pumps	216	under	shelves	0.98 ± 4.09	21.0 ± 19.9
LA Smear	A-068A	pumps	217	under	grate	-1.10 ± 4.09	-6.4 ± 16.4
LA Smear	A-068A	shelves	218			0.98 ± 4.09	10.3 ± 18.6
LA Smear	A-068A	ladder	219	unde	r grate	9.31 ± 9.14	29.3 ± 20.8
LA Smear	A-068A	misc. scrap	220			5.15 ± 7.08	12.7 ± 18.9
LA Smear	A-068A	drum	222			-1.10 ± 4.09	-6.4 ± 16.4
LA Smear	A-068A	pump - rim	231	w/rad s	stickers	182.63 ± 38.31	429.4 ± 47.5
LA Smear	A-068A	pump, etc	256	Internal	SE Corner	13.56 ± 10.81	3.8 ± 17.7
LA Smear	A-068A	pump #2	257	Internal	by E Wall	-1.02 ± 4.09	-1.0 ± 17.1
LA Smear	A-068A	pump #3	258	Internal	by E Wall	1.06 ± 4.09	-8.2 ± 16.1
LA Smear	A-068A	Container #4	259	Internal	by E Wall	1.06 ± 4.09	6.1 ± 18.0
LA Smear	A-068A	pumps-2 #5	260	Internal	by N Wall	1.06 ± 4.09	-10.5 ± 15.7
LA Smear	A-068A	pump #6	261	Internal	by W Wall	-1.02 ± 4.09	-5.8 ± 16.4
SA Smear	Tunnel	Floors	174	Entrance	from 310	5.04 ± 7.08	24.5 ± 20.3
SA Smear	Tunnel	Floors	175	3	from 310	5.04 ± 7.08	22.1 ± 20.0
SA Smear	Tunnel	Floors	176	15	from 310	5.04 ± 7.08	17.3 ± 19.5
SA Smear	Tunnel	Floors	177	25	from 310	-1.21 ± 4.10	16.1 ± 19.3
SA Smear	Tunnel	Floors	178	35	from 310	2.96 ± 5.78	38.8 ± 21.8
SA Smear	Tunnel	Floors	179	45	from 310	2.96 ± 5.78	6.6 ± 18.2
SA Smear	Tunnel	Floors	180	55	from 310	9.21 ± 9.14	18.5 ± 19.6
SA Smear	Tunnel	Floors	181	65	from 310	-1.21 ± 4.10	24.5 ± 20.3
SA Smear	Tunnel	Floors	182	75	from 310	0.88 ± 4.10	38.8 ± 21.8
SA Smear	Tunnel	Floors	183	85	from 310	5.04 ± 7.08	24.5 ± 20.3
					Minimum	-1.21 ± 0.27	-24.8 ± 1.8
					Maximum	8,436.83 ± 259.86	5,736.0±162.5
					Average	89.59 ± 10.02	107.2 ± 22.4
				Standard	Deviation	747.61 ± 25.06	520.7 ± 16.9
					Count	238	238

TABLE B2 Building 310 Smear Data logged on the DABRAS or NE

	*1000			Coord	inates	dis/min		
Туре	Room	Location	No.	up	. right	Alpha	Beta	
		Contra	509	all		15.7 ± 11.8	39 ± 47	
LA Smear	A-026A	Grate #0	518	Internal	DABRAS	2.749.3 ±131.9	46,419 ±429	
LA Smear	A-026A	Tank #8	518	Internal	NE	461.0 ±102.8	19,529 ±525	
LA Smear	A-026A	Tank #8		Internal	DABRAS	$1.560.8 \pm 99.5$	53,362 ±460	
LA Smear	A-026A	Tank #9	519		NE	89.0 ± 51.2	26,429 ±601	
LA Smear	A-026A	Tank #9	519	Internal	DABRAS	64.6 ± 21.2	$1,703 \pm 93$	
LA Smear	A-026A	Tank #10	520	Internal	NE	50.0 ± 42.3	803 ±210	
LA Smear	A-026A	Tank #10	520	Internal			815 ± 72	
LA Smear	A-038A	Pipes 5	42	Horizontal	& Vertical	134.1 ± 29.8	663 ± 68	
LA Smear	A-038A	Pipes 6	43	Horizontal	& Vertical	77.2 ± 23.0		
LA Smear	A-038A	Pipes 7	44	Horizontal	& Vertical	374.0 ± 49.0	$1,623 \pm 92$	
LA Smear	A-038A	Tank 5	45	Entire	Tank	613.9 ± 62.6	2,753 ±113	
LA Smear	A-038A	Tank 6	46	Entire	Tank	236.6 ± 39.2	1,476 ± 89	
LA Smear	A-038A	Tank 7	47	Entire	Tank	364.5 ± 48.4	3,696 ±129	
LA Smear	A-038A	North Wall	273	3 12.8	to 15.8	282.4 ± 42.7	371 ± 59	
LA Smear	A-038A	Pipe 1.75' fr Wall 27		11.83	14	-6.4±0.9	-40 ±108	
LA Smear	A-038A	Pipe 1.75' fr Wall 27	rom N	13.83	14	12,683.0±283.0	11,295±215	
	A-038A	Hot Spot	506	In front	of Tank 7	7.8 ± 9.5	2 ± 45	
LA Smear		Grate	507	In front	of Tank 6	14.1 ± 11.4	51 ± 47	
LA Smear	A-038A A-038A	Grate	508	all		22.0 ± 13.4	63 ± 48	
LA Smear		Tank #5	515	Internal	DABRAS	143.5 ± 30.8	6,264 ±163	
LA Smear	A-038A	Tank #5	515	Internal	NE	83.0 ± 50.0	3,887 ±287	
LA Smear	A-038A	Tank #6	516	Internal	DABRAS	83.6 ± 23.8	4,699 ±143	
LA Smear	A-038A	Tank #6	516	Internal	NE	89.0 ± 51.2	3,642 ±281	
LA Smear	A-038A	Tank #7	521	Internal	DABRAS	96.2 ± 25.5	5,625 ±155	
LA Smear	A-038A	Tank #7	521	Internal	NE	50.0 ± 42.3	3,258 ±273	
LA Smear	A-038A		522	9	1	18.8 ± 12.7	569 ± 65	
Tarpaper-t	A-038A	Floor	523	9	1	9.4 ± 10.0	139 ± 51	
Tarpaper-b	A-038A	Floor		9.42	10	45.7 ± 18.2	258 ± 55	
Tarpaper-t	A-038A	Floor	524	9.42	10	861.6 ± 74.0	1,817 ± 96	
Tarpaper-b	A-038A	Floor	525	9.33	19	12.5 ± 11.0	196 ± 53	
Tarpaper-t	A-038A	Floor	526	9.33	19	37.8 ± 16.7	531 ± 64	
Tarpaper-b	A-038A	Floor	527	9.33	25	23.6 ± 13.8	152 ± 51	
Tarpaper-t	A-038A	Floor	528	9.42	25	93.0 ± 25.1	935 ± 76	
Tarpaper-b	A-038A	Floor	529	9.42	1	11.0 ± 10.5	114 ± 50	
LA Smear	A-038A	Floor	530		10	11.0 ± 10.5	62 ± 48	
LA Smear	A-038A	Floor	531	9.42	19	4.6 ± 8.4	33 ± 47	
LA Smear	A-038A	Floor	532	9.33	25	6.2 ± 9.0	58 ± 48	
LA Smear	A-038A	Floor	533	9.42	25			
LA Smear	A-050A	West Wall	500	lower		75.7 ± 22.8	1,430 ± 88	
LA Smear	A-050A	West Wall	501			135.6 ± 30.0	2,396 ±107	
LA Smear	A-050A	West Wall	502	Ele	ctric Box	$1,125.2 \pm 84.5$	26,007 ±32	
LA Smear	A-050A	Floor	503	Under Grate	Tank 4	20.4 ± 13.0	-26 ± 44	
LA Smear	A-050A	grate	505	all		7.8 ± 9.5	83 ± 49	

TABLE B2 Building 310 Smear Data logged on the DABRAS or NE

				Coor	dinates	dis/r	nin
Туре	Room	Location	No.	up	right	Alpha	Beta
LA Smear	A-050A	Hot Spot	510	Infront	of tank 4	9.4 ± 10.0	107 ± 50
LA Smear	A-050A	Tank #4	511	Internal	DABRAS	407.1 ± 51.1	11,13 ±214
LA Smear	A-050A	Tank #4	511	Internal	NE	272.0 ± 80.8	7,059 ±349
LA Smear	A-050A	Tank #2	512	Internal	DABRAS	517.6 ± 57.5	24,254 ±31
LA Smear	A-050A	Tank #2	512	Internal	NE	255.0 ± 78.5	9,329 ±38
LA Smear	A-050A	Tank #3	517	Internal	DABRAS	225.6 ± 38.3	10,047 ±20
LA Smear	A-050A	Tank #3	517	Internal	NE	72.0 ± 47.6	4,365 ±29
LA Smear	A-062A	grate	504	all		-4.8 ± 3.3	39 ± 47
LA Smear	A-062A	Tank #1	513	Bottom of	tank-external	454.5 ± 53.9	20,561 ±28
LA Smear	A-062A	Tank #1	514	Internal	DABRAS	208.2 ± 36.8	17,699 ±26
LA Smear	A-062A	Tank #1	514	Internal	NE	127.0 ± 58.6	6,511 ±33
LA Smear	A-068A	pump-cont	536	Internal	DABRAS	153.0 ± 31.7	396 ± 60
LA Smear	A-068A	pump-cont	536	Internal	NE	215.3 ± 63.5	20,020 ±52
LA Smear	B007	Pipe	534	Internal	from 310	542.8 ± 58.9	19,105 ±27
LA Smear	B007	Pipe	535	Interna	il to 310	143.5 ± 30.8	7,005 ±17
LA Smear	Tunnel	Pipes #1	184	0 to 3	from 310	66.2 ± 21.4	1,281 ± 84
LA Smear	Tunnel	Pipes #2	185	3	from 310	116.7 ± 27.9	473 ± 62
LA Smear	Tunnel	Pipes #3	186	15	from 310	78.8 ± 23.2	549 ± 65
LA Smear	Tunnel	Pipes #4	187	25	from 310	26.7 ± 14.5	258 ± 55
LA Smear	Tunnel	Pipes #6	188	45	from 310	22.0 ± 13.4	173 ± 52
LA Smear	Tunnel	Pipes #5	189	35	from 310	22.0 ± 13.4	189 ± 53
LA Smear	Tunnel	Pipes #7	190	55	from 310	20.4 ± 13.0	248 ± 55
LA Smear	Tunnel	Pipes #8	191	65	from 310	9.4 ± 10.0	89 ± 49
LA Smear	Tunnel	Pipes #9	192	75	from 310	-0.1 ± 6.4	204 ± 53
LA Smear	Tunnel	Pipes #10	193	85	from 310	11.0 ± 10.5	166 ± 52
					Minimum	-6.4 ± 0.9	-40 ± 44
					Maximum	12,683.0±283.0	53,362 ±60
					Average	400.2 ± 37.8	5, 887 ±15
				Standard	Deviation	1,567.2 ± 40.3	10,441 ±14
					Count	67	67

TABLE B3 Brick Sample Data from Tennelec for 310 Retention Tanks

-			gest mi	Coordinates (feet)		dis/min	
Туре	Room	Location	No.	up	right	Alpha	Beta
		C 4 W-11	235	8	11	-1.02 ± 4.09	8.5 + 18.3
Brick	A-026A	South Wall		7	19	1.06 ± 4.09	9.7 ± 18.5
Brick	A-026A	South Wall	240			9.40 + 9.14	10.9 ± 18.
Brick	A-038A	South Wall	237	8	9		
Brick	A-038A	South Wall	242	9	18 from E	-1.02 ± 4.09	-7.0 ± 16.
Brick	A-038A	South Wall	262	0.83	7	3.19 ± 5.78	-1.3 ± 17.
Brick	A-038A	South Wall	263	6	24	1.10 ± 4.09	$-8.4 \pm 16.$
Brick	A-038A	South Wall	264	2	17	1.10 ± 4.09	2.3 ± 17.3
Brick	A-038A	South Wall	265	2	18	1.10 ± 4.09	14.2 ± 19.
Brick	A-050A	South Wall	232	5	18 from E	-1.02 ± 4.09	-1.0 ± 17.
Brick	A-050A	South Wall	234	5	9	1.06 ± 4.09	3.8 ± 17.7
Brick	A-050A	South Wall	238	2	9 from E	1.06 ± 4.09	9.7 ± 18.
Brick	A-062A	South Wall	239	7	18	3.15 ± 5.78	-4.6 ± 16
Brick	A-062A	South Wall	241	7	25 from E	1.06 ± 4.09	8.5 ± 18 .
Blick	71 00271	Dodan		20 - 405.00	Minimum	-1.02 ± 4.09	-8.4 ± 16.
					Maximum	9.40 ± 9.14	14.2 ± 19
					Average	1.56 ± 4.74	3.5 ± 17 .
				Stand	ard Deviation	2.60 ± 1.41	7.1 ± 0.9
					Count	13	13

TABLE B4 Internal Tank Data form Building 310 Retention Tanks

				Coordi	nates (feet)	dis/	min
Туре	Room	Location	No.	up	right	Alpha	Beta
LA Smear	A-062A	Tank #1	514	Internal	DABRAS	208.2 ± 36.8	17,699 ± 26
LA Smear	A-062A	Tank #1	514	Internal	NE	127.0 ± 58.6	6,511 ± 339
LA Smear	A-050A	Tank #2	512	Internal	DABRAS	517.6 ± 57.5	24,254 ± 312
LA Smear	A-050A	Tank #2	512	Internal	NE	255.0 ± 78.5	9,329 ± 387
LA Smear	A-050A	Tank #3	517	Internal	DABRAS	225.6 ± 38.3	10,047 ± 204
LA Smear	A-050A	Tank #3	517	Internal	NE	72.0 ± 47.6	4,365 ± 297
LA Smear	A-050A	Tank #4	511	Internal	DABRAS	407.1 ± 51.1	11,138 ± 214
LA Smear	A-050A	Tank #4	511	Internal	NE	272.0 ± 80.8	$7,059 \pm 349$
LA Smear	A-038A	Tank #5	515	Internal	DABRAS	143.5 ± 30.8	6,264 ± 163
LA Smear	A-038A	Tank #5	515	Internal	NE	83.0 ± 50.0	3,887 ± 287
LA Smear	A-038A	Tank #6	516	Internal	DABRAS	83.6 ± 23.8	4,699 ± 143
LA Smear	A-038A	Tank #6	516	Internal	NE	89.0 ± 51.2	$3,642 \pm 281$
LA Smear	A-038A	Tank #7	521	Internal	DABRAS	96.2 ± 25.5	5,625 ± 155
LA Smear	A-038A	Tank #7	521	Internal	NE	50.0 ± 42.3	3,258 ± 273
LA Smear	A-026A	Tank #8	518	Internal	DABRAS	2,749.3 ±131.9	46,419 ± 429
LA Smear	A-026A	Tank #8	518	Internal	NE	461.0 ± 102.8	19,529 ± 525
LA Smear	A-026A	Tank #9	519	Internal	DABRAS	$1,560.8 \pm 99.5$	53,362 ± 460
LA Smear	A-026A	Tank #9	519	Internal	NE	89.0 ± 51.2	$26,429 \pm 601$
LA Smear	A-026A	Tank #10	520	Internal	DABRAS	64.6 ± 21.2	1,703 ± 93
LA Smear	A-026A	Tank #10	520	Internal	NE	50.0 ± 42.3	803 ± 210
					Minimum	50.0 ± 21.2	803 ± 93
					Maximum	$2,749.3 \pm 131.9$	$53,362 \pm 601$
					Average	380.2 ± 56.1	13,301 ± 299
				Standa	rd Deviation	650.6 ± 28.7	$14,480 \pm 131$
					Count	20	20

APPENDIX C: Air Sample Data

TABLE C1 Air Sample Data from Tennelec for 310 Retention Tanks

			initial dis/min		Low Bkgd dis/min				%1	DAC	
Room	Sample No.	Date Removed	α	β	Date Count #1	α	β	Date Counted	Vol (m³)	α DAC 5 ^b	β DAC 4000 ^c
							24.60 . 0.22	08/19/96	96	0.91 ± 0.03	0.0090 ± 0.0001
026	194	07/03/96	2.27 ± 2.33	16.8 ± 8.8	07/08/96	5.27 ± 0.16	34.60 ± 0.32	08/19/96	96	0.97 ± 0.03	0.0098 ± 0.0001
038	195	07/03/96	2.69 ± 2.47	17.3 ± 8.8	07/08/96	5.56 ± 0.16	37.56 ± 0.33		90	0.77 2 0.02	
050	196						air sample collec		96	1.02 ± 0.03	0.0093 ± 0.0001
062	197	07/03/96	1.44 ± 2.02	25.8 ± 9.3	07/08/96	5.87 ± 0.16	35.72 ± 0.33	08/19/96			0.0094 ± 0.0001
026	198	07/09/96	2.27 ± 2.33	15.3 ± 8.7	07/15/96	4.22 ± 0.14	28.87 ± 0.30	08/19/96	76.8	0.92 ± 0.03	0.0094 ± 0.0001 0.0099 ± 0.0001
038	199	07/09/96	1.85 ± 2.18	21.3 ± 9.0	07/15/96	4.28 ± 0.14	30.31 ± 0.30	08/19/96	76.8	0.93 ± 0.03	
050	200	07/09/96	2.69 ± 2.47	26.3 ± 9.3	07/15/96	4.33 ± 0.14	30.60 ± 0.30	08/19/96	76.8	0.94 ± 0.03	0.0100 ± 0.000
062	200	07/09/96	1.44 ± 2.02	23.9 ± 9.2	07/15/96	4.53 ± 0.14	31.43 ± 0.31	08/19/96	76.8	0.98 ± 0.03	0.0102 ± 0.000
			4.71 ± 2.95	31.3 ± 9.5	07/22/96	3.16 ± 0.12	16.07 ± 0.23	08/19/96	57.6	0.91 ± 0.03	0.0070 ± 0.000
026	202	07/12/96	4.71 ± 2.93 1.38 ± 1.84	42.9 ±10.0	07/22/96	3.35 ± 0.12	16.50 ± 0.23	08/19/96	57.6	0.97 ± 0.04	0.0072 ± 0.000
038	203	07/12/96		42.9 ± 10.0 21.0 ± 9.0	07/22/96	6.66 ± 0.17	21.74 ± 0.26	08/19/96	57.6	1.93 ± 0.05	0.0094 ± 0.000
050	204	07/12/96	2.63 ± 2.32	32.0 ± 9.5	07/22/96	4.08 ± 0.14	25.14 ± 0.28	08/19/96	57.6	1.18 ± 0.04	0.0109 ± 0.000
062	205	07/12/96	6.79 ± 3.47			4.33 ± 0.14	29.19 ± 0.30	08/19/96	96	0.75 ± 0.02	0.0076 ± 0.000
026	206	07/19/96	1.35 ± 1.84	19.3 ± 9.0	07/29/96	4.58 ± 0.14 4.58 ± 0.14	37.71 ± 0.33	08/19/96	96	0.79 ± 0.03	0.0098 ± 0.000
038	207	07/19/96	0.94 ± 1.65	23.1 ± 9.2	07/29/96		37.71 ± 0.33 37.41 ± 0.33	08/19/96	96	0.71 ± 0.02	0.0097 ± 0.000
050	208	07/19/96	2.60 ± 2.32	22.2 ± 9.1	07/29/96	4.09 ± 0.14	37.41 ± 0.33 35.16 ± 0.32	08/19/96	96	0.69 ± 0.02	0.0092 ± 0.000
062	209	07/19/96	1.35 ± 1.84	17.7 ± 8.9	07/29/96	3.99 ± 0.14			96	0.78 ± 0.03	0.0058 ± 0.000
026	266	07/26/96	3.06 ± 2.46	16.6 ± 8.8	08/15/96	4.50 ± 0.14	22.16 ± 0.26	08/21/96	96	0.78 ± 0.03 1.29 ± 0.03	0.0094 ± 0.000
038	267	07/26/96	6.40 ± 3.38	35.6 ± 9.7	08/15/96	7.45 ± 0.18	35.94 ± 0.33	08/21/96	96	1.50 ± 0.03	0.0092 ± 0.000
050	268	07/26/96	6.81 ± 3.47	28.0 ± 9.4	08/15/96	8.64 ± 0.20	35.39 ± 0.32	08/21/96	96	1.30 ± 0.03 1.49 ± 0.03	0.0092 ± 0.000
062	269	07/26/96	7.65 ± 3.66	14.9 ± 8.7	08/15/96	8.58 ± 0.20	35.56 ± 0.32	08/21/96	90	0.69 ± 0.02	0.0058 ± 0.000
		Minimum	0.94 ± 1.65	14.9 ± 8.7		3.16 ± 0.12	16.1 ± 0.2			0.09 ± 0.02 1.93 ± 0.05	0.0030 ± 0.000
		Maximum	7.65 ± 3.66	42.9 ±10.0		8.64 ± 0.20	37.7 ± 0.3			1.93 ± 0.03 1.04 ± 0.03	0.0091 ± 0.000
		Average	3.17 ± 2.48	23.7 ± 9.1		5.13 ± 0.15	30.4 ± 0.3			0.31 ± 0.03	0.0091 ± 0.000
	Stano	dard Deviation	2.11 ± 0.60	7.4 ± 0.3		1.58 ± 0.02	6.8 ± 0.0			0.31 ± 0.01	0.0012 ± 0.000
		Count	19	19		19	19			19	

 $[^]a$ Working Volume (m³) = 40 liters/min x time (time = 60 min/hr x 8 hours x number of week days) b Alpha DAC = 6 for 239 Pu $^2^{14}$ Am & 238 Pu c Beta DAC = 4,000 for 90 Sr

FIGURE C1 Airborne Alpha Particulate Spectra Collected 7/5/96

FIGURE C2 Low Energy Alpha Spectrum Collected 7/5/1996

FIGURE C3 Airborne Alpha Particulate Spectra Collected 7/8/96

FIGURE C4 Low Energy Alpha Spectrum Collected 7/8/1996

FIGURE C5 Airborne Alpha Particulate Spectra Collected 7/9/96

FIGURE C6 Low Energy Alpha Spectrum Collected 7/9/96

FIGURE C7 Airborne Alpha Particulate Spectra Collected 7/12/96

FIGURE C8 Low Energy Alpha Spectrum Collected 7/12/1996

FIGURE C9 Airborne Alpha Particulate Spectra Collected 7/15/96

FIGURE C10 Low Energy Alpha Spectrum Collected 7/15/1996

FIGURE C11 Airborne Alpha Particulate Spectra Collected 7/18/96

FIGURE C12 Low Energy Alpha Spectrum Collected 7/18/1996

FIGURE C13 Airborne Alpha Particulate Spectra Collected 7/19/96

FIGURE C14 Low Energy Alpha Spectrum Collected 7/19/1996

FIGURE C15 Airborne Alpha Particulate Spectra Collected 7/22/96

FIGURE C16 Low Energy Alpha Spectrum Collected 7/22/1996

FIGURE C17 Airborne Alpha Particulate Spectra Collected 7/25/96

FIGURE C18 Low Energy Alpha Spectrum Collected 7/25/1996

FIGURE C19 Airborne Alpha Particulate Spectra Collected 7/26/96

FIGURE C20 Low Energy Alpha Spectrum Collected 7/26/1996

FIGURE C21 Airborne Alpha Particulate Spectra Collected 8/1/96

FIGURE C22 Low Energy Alpha Spectrum Collected 8/1/1996

FIGURE C23 Airborne Alpha Particulate Spectra Collected 8/2/96

FIGURE C24 Low Energy Alpha Spectrum Collected 8/2/1996

FIGURE C25 Airborne Alpha Particulate Spectra Collected 8/5/96

FIGURE C26 Low Energy Alpha Spectrum Collected 8/5/1996

APPENDIX D: Analytical Results

TABLE D1 Documents Containing Analytical Results

Identification	Page No.
Plan for Sampling 310 Retention Tanks	D-4
Thermo Analytical Inc. Analytical Results from Retention Tanks Sampling	D-12
Memo - J. Demski to L. Boing, Building 310 Retention Tanks Sampling Results	D-15
Memo - R. Rose to Building 310 File, Results of Tanks Sampling Performed by EMO/WM in June 1995	D-16
Control Lab Analysis Results of Water From Floor of Room A038A prior to release from the Building 310 Active Retention Tanks to the Site Drains	D-17
Memo - M. Bonkalski and J. Woodring to G. Mosho, Industrial Hygiene Survey Summary Report, dated January 9, 1995	D-21
Memo - D.R. Lucas and G.E. Myers to C. Sholeen, Industrial Hygiene Survey Summary Report, dated August 21, 1996	D-23
HSA Data Base Table for Building 310	D-24
Memo - M. Bonkalski to C. Sholeen, Industrial Hygiene Survey Summary Report for Lead, dated September 26, 1996	D-34
Low Background Air Sample Results for Samples 310 194 to 310 209 and 310 266 to 310 269 from the ESH-DA Bioassay Group	D-35
Air Sample Gamma Spectroscopy Results for Samples 194, 195, 197 to 209 from ESH-DA Bioassay Group	D-40
Control Lab Analysis Results of Water from A038A Floor and Tunnel Samples 6303 and 6310	D-41
ESH-HP Tritium Analysis Results for the Water from the Floor of A038A	D-45
Heritage Environmental Services, Inc. Certificate of Analysis for the Water from the Floor of A038A	D-47
Gamma Spectroscopy Results of Smear Samples 270, 271 and 502 from ESH-DA Bioassay Group	D-53
Memo - D. Nelson to C. Sholeen, Gamma Spectroscopy Results of Two Building 310 Samples	D-56
Excerpts from Regulations 32 Illinois Administrative Code: Chapter II	D-57
Control Lab Analysis Results of Water from the Transfer Line Between 310 and 306	D-60
Argonne ACL Analysis Results of Water from the Transfer Line Between 310 and 306	D-62

JOB TITLE: SAMPLING 310 RETENTION TANKS

JOB DESCRIPTION: The purpose of this JOB PLAN is to provide guidance and instructions

for the safe sampling of ten (10) retention tanks on the Service Floor of Building 310. This testing is needed for the Characterization of contents from each tank to ensure proper disposal after the tank clean-

out.

WRITER: SUE SANTARELLI JOB NUM: JP950015

PRECAUTIONS:

- The material inside the retention tanks is potentially radioactive and significant coordination with ESH-Health Physics is required.
- ESH Industrial Hygiene and ESH Industrial Safety and ESH Health Physics must be consulted about personal protective equipment and the spread of radioactive contamination prior to beginning work.
- Material associated with decontamination and contaminated clothing must be put into separate containers designated to Minimize Radioactive waste generation.
- The pipeline that connects Building 306 to the 10 Retention Tanks in Building 310 do not have a valve that can be opened or closed. This line has been capped off and liquid cannot be transferred from Buildings 306 to 310.

REFERENCE: None

PREREQUISITES:

1. Prepare a Radiation Work Permit and Work Clearance Permit and post in work area.

EMO/WMO

INITIAL/DATE

Hold a preplan meeting before starting this JOB PLAN with the WMO and PFS-BM

Foreman, PFS	S-BM, WMO Mechanics, ESH-He	alth Physics and ESH-Industrial H	ygiene
		EMO/WMO	
		INITIAL/DATE	
Set up the fo	orced air ventilation in work area	if necessary.	
	·	EMO/WMO	
		INITIAL/DATE	
Verify ESH-H	HEALTH PHYSICS coverage is av	vailable for the scheduled work.	
		EMO/WMO	
		INITIAL/DATE	
Gather the f a. b. c. d. e. f. h.	ollowing tools/items. 5/8 socket Wipes 815 solution/soap/water poly bags for wipes sampling scoop sampling jars/id tags ladders	Concerns principle and appropriate agency of the principle of the principl	
		EMO/WMO	

INITIAL/DATE

3.

5.

PROCEDURE:

- 1. Don personnel protective equipment according to the RADIATION WORK PERMIT.
 - A. Tyvek Suit
 - C. Gloves
- 2. Surround the manhole opening with plastic sheeting.
- Verify ESH-HP has surveyed opening of the manhole. NOTE: if opening is contaminated, decon area using soap and water.
- 4. UNBOLT manhole using the appropriate tools such as an impact wrench or socket.
- Open manhole.
- Verify ESH-IH monitors each tank atmosphere for combustible gases, oxygen content and organic.
- Using a long handled scoop, take sludge sample and place into a labeled jar.
 <u>NOTE:</u> IF SLUDGE IS DRIED, USE THE LONG HANDLE OF THE SCOOP TO SCRAPE
 ENOUGH SLUDGE FOR A (20 OZ.) SAMPLE.
- Have ESH-HP survey the sample jar(s). NOTE: If sample jar is deemed Radioactively contaminate, wipe jar using soap and water.
- After sample has been taken, ensure ESH-HP has surveyed opening of the manhole
- 10. Close manhole and secure.
- 11. Remove Plastic sheeting surrounding the manhole.
- 12. Remove ladder from tank.
- 13. Decontaminate sampling equipment before proceeding to next tank to be sample.
- 14. Repeat Steps 2-13 until all tanks have been sampled.

ATTACHED IS THE SIGN-OFF SHEETS FOR EACH STEP REQUIRED FOR COMPLETION OF THIS JOB PLAN.

PROCEDURE/STEPS	GROUP	TANK #1 INITIAL/ DATE	TANK #2 INITIAL/ DATE	TANK #3 INITIAL/ DATE
1. Don personnel protective equipment	WMO	GAM.	a made no ligital	decision of the
2. Surround the manhole opening with plastic sheeting.	ЕМО			in promote S desire garrige contains
3. Verify ESH-HP has surveyed opening	ESH-HP	399.410		100 100 100
4. UNBOLT manhole	WMO			
5. Open manhole	WMO			
6. Verify ESH-IH monitors each tank	WMO	9161	Englishm	
7. Using a long handled scoop, take sludge sample and place into a labeled jar.	wмо	600	PODRE HIGHER RE SECTIONS	t a local applied A ton a colon, applied to a colon, applied to a colon applied to the
8. Have ESH-HP survey the sample jar(s)	ESH-HP		ad review	
9. ESH-HP has surveyed opening of the manhole	ESH-HP		D Salara	on a fir has provide the
10. Close manhole	WMO			nd on end 2.01
11. Remove Plastic sheeting surrounding the manhole.	WMO			est evenen in it
12. Remove ladder from tank.	WMO	6,500	W mod to	State avaman S
13. Decontaminate sampling equipment	wmo	000	37	describing on the
14. Repeat Steps 2-13 until all tanks have been sampled.				di Regrest Si que Si sant e Si que Si en empires.

PROCEDURE/STEPS	GROUP	TANK#4 INITIAL/ DATE	TANK#5 INITIAL/ DATE	TANK#6 INITIAL/ DATE
Don personnel protective equipment	WMO		n interpreter	
2. Surround the manhole opening with plastic sheeting.	EMO			
3. Verify ESH-HP has surveyed opening	ESH-HP	100		
4. UNBOLT manhole	WMO			
5. Open manhole	WMO			
6. Verify ESH-IH monitors each tank	wмо			
7. Using a long handled scoop, take sludge sample and place into a labeled jar.	WMO			
8. Have ESH-HP survey the sample jar(s)	ESH-HP			
ESH-HP has surveyed opening of the manhole	ESH-HP		bayavata	
10. Close manhole	WMO			
11. Remove Plastic sheeting surrounding the manhole.	WMO		40 11 15	
12. Remove ladder from tank.	WMO		mod whi	
13. Decontaminate sampling equipment	WMO			
14. Repeat Steps 2-13 until all tanks have been sampled.			imati-a-a-	

PROCEDURE/STEPS	GROUP	TANK #7 INITIAL/ DATE	TANK #8 INITIAL/ DATE	TANK #9 INITIAL/ DATE
Don personnel protective equipment	WMO	970039103945	bereg gett. ?	
2. Surround the manhole opening with plastic sheeting.	ЕМО		Anceron S	
3. Verify ESH-HP has surveyed opening	ESH-HP	• 005	1 (23 year) - 8.	
4. UNBOLT manhole	WMO			
5. Open manhole	WMO			
6. Verify ESH-IH monitors each tank	WMO	entistation 1	S PESS VINNEY , 8	
7. Using a long handled scoop, take sludge sample and place into a labeled jar.	WMO	STORES SE	P. Calog a long abbop, take : in and place has	
8. Have ESH-HP survey the sample jar(s)	ESH-HP		4132 9961 8	
9. ESH-HP has surveyed opening of the manhole	ESH-HP			
10. Close manhole	WMO		,	
11. Remove Plastic sheeting surrounding the manhole.	WMO		Const 1)	
12. Remove ladder from tank.	WMO		- Property Ci	
13. Decontaminate sampling equipment	WMO		Shell Shell	

PROCEDURE/STEPS	GROUP	TANK #10 INITIAL/ DATE
Don personnel protective equipment	WMO	a etaetang leak
2. Surround the manhole opening with plastic sheeting.	ЕМО	
3. Verify ESH-HP has surveyed opening	ESH-HP	44 90
4. UNBOLT manhole	WMO	
5. Open manhole	WMO	4
6. Verify ESH-IH monitors each tank	WMO	- Aller
7. Using a long handled scoop, take sludge sample and place into a labeled jar.	WMO	a ephilis
8. Have ESH-HP survey the sample jar(s)	ESH-HP	
ESH-HP has surveyed opening of the manhole	ESH-HP	
10. Close manhole	WMO	
11. Remove Plastic sheeting surrounding the manhole.	WMO	to train mag
12. Remove ladder from tank.	WMO	
13. Decontaminate sampling equipment	WMO	

RETI			

1.	Clean up and decontaminate	ate general work area as necessary.		
		EWM/WMO		

INITIAL/DATE

 Collect, properly package and document all contaminated Waste generated during the operation. Waste Generator shall prepare a EWM 195 for disposal of waste generated.

EWM/WMO

INITIAL/DATE

Clean and return all equipment used in performing this job to its proper place.

EWM/WMO

INITIAL/DATE

 Survey the work area and verify that area is free of contamination and available for normal use.

EWM/WMO

INITIAL/DATE

5. Return the competed JOB PLAN to the Foreman for review.

EWM/WMO

INITIAL/DATE

Summary of Analytical Results Building 310 Laboratory Wastewater Retention Tank Sampling Argonne National Laboratory — Argonne, Illinois

Sample Date:	6/23/95
Matrix:	Sludge
Building:	310
Tank I.D.:	310Tank

RCRA Characterization

TCLP Volatiles (mg/L)

None Above Detection

TCLP Semivolatiles (mg/L)

None Above Detection

	NOTIC ADOVE DELECTION		
TCLP Metals (mg/L)		Q	eanup Criteria
	Barium	0.111	100
	Chromium	0.0285	5
	Mercury	0.00094	0.2
	Silver	0.0103	5
TCLP Pesti	cides (mg/L)		
	None Above Detection		
Reactivity			
	Corrosivity by pH (pH)	7	
Ignitability		Not Ignitable	
Mercury, Total (mg/kg)		0.0631	
PCBs (mg/L)			
	Aroclor-1254	0.0017	
Radiochemistry			
Radionucii	des [∞] (pCl/g)		
	Gross Alpha	32,050.40	
	Gross Beta	73,047.80	
	Plutonium-239	65.1	
	Plutonium-238	2.7	
	Americium-241	11.1	
	Uranium-234	16,560	
	Uranium-235	2276	
	Uranium-238	23,270	
	Strontium-90	88.25	
	Cesium-137	107,200	
	Potassium-40	170.9	
	Thorium-234	3994	
	Uranium-235	1881	
	Cobalt-60	2369	
	Protactinium-234m	6173	

This table is only a summary of those analytes detected

^{*}Cleanup Criteria is derived from 40 CFR 261.24 - Table 1

^{**}The maximum result is listed

SPECIAL PROBLEMS OR UNUSUAL CIRCUMSTANCES CONTINUED

GROSS ALPHA/BETA

Sample demonstrated positive activity for Gross Alpha/Beta. Samples contained elevated total dissolved solids, (TDS) and total suspended solids, (TSS), which required limited aliquots (20 ml) for analysis. Due to this condition, and after consideration of all Alpha and Beta emitting radionuclides present, the evaluation is that the results for Gross Alpha/Beta activity may be biased low. Samples were counted several times for informational purposes only. Results for the replicate and first set of analyses are reported. No other significant problems were noted during the analysis process.

STRONTIUM-90

Sample demonstrated slightly positive Strontium-90 activity. No significant problems were noted during the analysis process.

ISOTOPIC URANIUM

Sample demonstrated very elevated Uranium activity and was reanalyzed. During final precipitation of Uranium with Neodymium fluoride, the sample was physically green indicating excessive amounts of Uranium on the filter to be counted by Alpha spectroscopy. Results seem to indicate the presence of Depleted Uranium. However, this may not be the case due to inherent self absorption problems which caused the Uranium-234 spectra to be somewhat degraded. The presence of excessive Uranium within this sample caused interference problems with other analytes as reported within this data package. No other significant problems were noted during the analysis process.

ISOTOPIC PLUTONIUM

Sample appears to contain only slightly positive Plutonium-238 activity and significant Plutonium-239 activity. Evaluation of spectral data indicates the possibility that some Uranium bleedover during the elution of Plutonium may have occurred. Consideration of this may be necessary during evaluation of these results. No other significant problems were noted during the analysis process.

AMERICIUM-241

Sample results indicate slightly positive Americium-241 activity. During the evaluation of Alpha spectroscopy data it was noted the there is the possibility of some Curium-244 activity within this sample (see raw data from the Americium-241 section). Uranium bleedover during the Americium-241 elution procedure may have occurred. No other significant problems were noted during the analysis process.

SPECIAL PROBLEMS OR UNUSUAL CIRCUMSTANCES CONTINUED

GAMMA SPECTROSCOPY

Samples demonstrated significant Cobalt-60 and Cesium-137 activity. No significant problems were noted during the analysis process.

CERTIFICATION OF ACCURACY

I certify that this data report is in compliance with the terms and conditions of the Purchase Order, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the electronic data submitted on diskette has been authorized by the cognizant project manager or his/her designee to be accurate as verified by the following signature.

M. R. McDougall Laboratory Manager

Date: 7128/95

ARGONNE NATIONAL LABORATORY

Intra-Laboratory Memo

September 5, 1995

TO:

L. Boing

TD&DD

FROM:

J. Demski

EMO/WM

SUBJECT: Building 310 Retention Tank Sampling Results

Demoki

Per your request, I have summarized the analytical results for the above project in the attached table. In general, only limited concentrations of contaminants were detected in the tank. TCLP volatiles, semivolatiles, and pesticides and herbicides were not detected. Several TCLP metals and TCL Mercury were detected; however, the concentrations were low enough so that the sludge would not be considered characteristically hazardous. PCB analysis revealed a low concentration of Aroclor-1254 well below the TSCA defining limit of 50 mg/kg. Based upon the radiochemical analysis, the sample was found to be radioactive, and as a result, the sludge from the tank would be classified as low level radioactive waste. A detailed discussion of the radiochemical results is attached.

I will charge a total of 10 hours to cost code 54114-4B-113. Please feel free to contact me if you have any questions at extension 2-9733.

JF:dm

cc: File

s:\shared\fallbac\boing.2

ARGONNE NATIONAL LABORATORY

INTRA-LABORATORY MEMO

June 18, 1996

TO:

Bldg. 310 Retention Tank Facility D&D Project File

FROM:

R. Rose NV TD

SUBJECT:

Results of Tank Sampling Performed by EMO/WM in June 1995

Phone conversations with Sue Santarelli and a discussion with Earl Beavers on 6/14/96 indicate that when the sampling plan for the Bldg. 310 Retention Tanks was executed by EMO/WM in June 1995 only 4 of the 10 tanks contained liquid which could be sampled and that of the 4 which held liquid, there was insufficient quantity to take an individual sample from each. Therefore, a composite sample was obtained and sent to the vendor laboratory for analysis. The tanks containing sufficient liquid for sampling were #'s 3, 8, 9, &10. The location of these tanks is indicated on the attached floor plan of Bldg. 310 basement. As the attachment indicates, none of the tanks containing residual liquid are within the room designated as a SWMU (Room A-038-A).

cc:(w/attachment)

E. Beavers

N. Golchert

EMO W. Munyon ESH/HP

B. Murdock ESH/HP

EMO/WM

S. Santarelli EMO/WM T. Yule TD

File(310)

4 2 1 7 4 2 4 2 1 7 4 2 THOUSANDS HUNDREDS	1 7	4 2 TENS	((((((((((((((((((((1	1 7 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	((4 2 f f f 4 2 TENS	(((4 2 C C C C C C C C C C C C C C C C C C
B RETENTION TANK		N	0 11	0001		B RETENTION TANK	CAMPLI	ENON	0 11	9990
	SAMPLE	NOA.	- 00	01.						
Bldg. No	Date		-33	-74	-	Bldg. No. 310	Date	e	23	14
Tank No. 2 Gal	llons of W	aste in	Tank 2	900		Tank No/_ Ga	llons of V	Vaste in	Tank 👱	2000
Counter No.	13		14		1	Counter No.	1		2	
Sample Size					1	Sample Size				
Count For	β	α	β	α	li	Count For	β	α	β	α
Total Counts	1273	8	(25)	8	- 11	Total Counts	1303	73	1326	19
Counting Time	30	-			i i	Counting Time	30	_		
c/m	424	127	41.7	127		c/m	H3.7	177	44.5	
Background	H1.6	.06	40.8	103	1	Background	36.7	.02	41.1	101
BKGD + Net α c/m	41.8		41.0		1	BKGD + Net α c/m	37,7		41.7	
Net c/m	1.6	,21	.7	124	1	Net c/m	5.7	175	2,5	162
Volume Factor	20	-			li	Volume Factor	120			
c/m/ml	1.03	0105	035	,012	- 1	c/m/ml	1285	10375	1100	103
Yield Factor	1.35	1.96	1.35	1.96	li .	Yield Factor	1.35	1.96	1.35	1.96
d/m/ml	.04	1201	105	1024		d/m/ml	,38	1014	1,17	1,061
Average Beta	-				1	Average Beta		28		
Average Alpha	1000		MALE.			Average Alpha	0	.068		-A
Gross d/m/ml						Gross d/m/ml				
Sample Relinquished By Sample Received By Results Reported To Analys	VIII SI	Energy 3	er (12191		Sample Relinquished I Sample Received By _ Results Reported To _ Analys	St St	ARKE 3	er /	7289
PFS-11 (3-92)	(Submit W	th Sample	to ESH-C	Control Lab)		PFS-11 (3-92)	(Submit W	ith Sample	9 10 ESH-C	Control Lab)

4 2 1 7 4 2 4 2 1 7 4 2 4 2 1 7 4 2 THOUSANDS HUNDREDS	1 7 7 5	((((4 2 (4 2 UNITS	(1)	
B RETENTION TANK SAMPLE NO Nº 119992 Bldg. No. 3/0 Date 7-25-96 Tank No. 42 Gallons of Waste in Tank 1,700						
Counter No.	1		2			
Sample Size						
Count For	β	α	β	α		
Total Counts	1189	4	1335	8		
Counting Time	30_					
c/m	39.6	13	44,5	.27		
Background	36,4	,02	434	.04		
BKGD + Net α c/m	36.51		43.63			
Net c/m	3,04	-11	•87	.23		
Volume Factor	20					
c/m/ml	155	.006	.014	.02		
Yield Factor	1.35	1.96	1.35	1.96		
d/m/ml	.209	10	-059	,023		
Average Beta						
Average Alpha						
Average Alpha						
Gross d/m/ml						
A CALLANDA						
Sample Relinquished By						
Sample Received By	MA			W No	96	
Results Reported To RB						
Analyst_Donn						
PFS-11 (3-92) (Submit With Sample to ESH-Control Lab)						

4 2 1 7 4 2 4 2 1 7 4 2 THOUSANDS HUNDRED	1 7 1 7 8	1 (4 2 ((4 2 TENS	(1 7	(' (4 2 ((4 2 UNITS	1	1 7	((4 2 (f) 4 2 (f) 7 (f) 4 2 (f) 7 ((((4 2 C C C C C C C C C C C C C C C C C C
B RETENTION TANK	SAMPLI	ENON	9.11	1999	4 B DETENTION TO		N	0 4	10000
Bldg. No	Date	7/	\$ 19	p	B RETENTION TANK		e	138/	19993
Tank No. 2 Ga	llons of V	Vaste in	Tank Z	0001	Tank No. 1 Ga	llons of V	Vaste in	Tank Z	tooot
Counter No.	1 Zar		22		Counter No.				
Sample Size					Sample Size	19		20	
Count For	β	α	β	α	Count For	В	-	-	
Total Counts	1421	Ю	1290	9	Total Counts	1197	α 9	β	α
Counting Time	30-				Counting Time	1197	7	1520	20
c/m	42.4	.33	43,0	.30		10-			
Background	44.2	.05	420	-07	c/m	399	.30	50.7	.67
BKGD + Net α c/m	45,08	, , ,	4223	-01	Background	35,9	106	47.7	.28
Net c/m	232	-28	in	.23	BKGD + Net α c/m	36.14	-	48,09	
Volume Factor	20-		1011	10	Net c/m	3,76	.24	261	.39
c/m/ml	-116	-04	.639	12	Volume Factor	10-			
Yield Factor	1.35	1.96	1.35	1.96	c/m/ml	.188	.012	.13	020
d/m/ml	157	1.30	.052	6023	Yield Factor	1.35	1.96	1.35	1.96
WIII/III	411	6001	1.000	100	d/m/ml	.254	1024	116	-038
Average Beta					Average Beta			Charles of	
Average Alpha					Average Alpha				
Gross d/m/ml				_	Gross d/m/ml		-		
Sample Relinquished B Sample Received By		cele	eley		Sample Relinquished B	MA	. W	role	7.1C
Sample Received by _	114	-	1	1001 a	Sample Received By	M			M al
Results Reported To	RB		-/-	W120	Results Reported To	RB		1	720"
Analyst	- DX	Iom	~		Analyst	_&	Ho	m	1'.
PFS-11 (3-92)	Submit Wit	h Sample	to ESH-Co	ontrol Lab	PFS-11 (3-92)	Submit Wit	h Sample	to ESH-Co	ontrol Lab)

B RETENTION TAN				1999	B RETENTION TAN	IK SAMPL	ENO	10 1	199
Bldg. No. 310	Date	7-	3/_		Bldg. No. 510	Dat	e 7	31.9	io
Tank NoG	allons of W	Vaste in	Tank 2	1000 +	Tank No G	allons of \	Vaste in	Tank =	130
Counter No.	23		24		Counter No.	21		22	
Sample Size					Sample Size				
Count For	β	α	β	α	Count For	β	α	В	α
Total Counts	1145	9	1283	7	Total Counts	1467	13	1322	15
Counting Time	30-			-	Counting Time	30-		-	1.7
c/m	38.2	.30	42.8	.23	c/m	489	43	44,1	.50
Background	37.2	202	388	.02	Background	44.6		43.5	.10
BKGD + Net α c/m	32.48		39.0		BKGD + Net α c/m	45.00		43,90	
Net c/m	.72	.28	3.79	1.21	Net c/m	390	40	20	.40
Volume Factor	20-				Volume Factor	700	70		
c/m/ml	.036	-019	. 190	100	c/m/ml	.45	.00	1,010	.02
Yield Factor	1.35	1.96	1.35	1.96	Yield Factor	1.35	1.96	1.35	1.96
d/m/ml	,049	1027	256	,021	d/m/ml	.263	1039		102
Average Beta		1000			Average Beta				
Average Alpha					Average Alpha				
Gross d/m/ml					Gross d/m/ml				
Sample Relinquished By _ Sample Received By _ Results Reported To _	Ma	or	Li E		Sample Relinquished B Sample Received By Results Reported To Analyst	SWAN		8	19

Date: January 9, 1995

To: G. Mosho ESH-HP

From: M. Bonkalski W. ESH-IH
J. Woodring

Subject: INDUSTRIAL HYGIENE SURVEY SUMMARY REPORT

Operation Surveyed: Pre-Demolition Survey

Location Surveyed: Building 310 Retention Tanks, Building 202 JANUS Reactor

Building 211 60" Cyclotron

Material or Hazard Measured: Asbestos and Lead

Method of Measurement: Polarized Light Microscopy

BGI Lead Check Test Kit

Sample Description and Results:

All of the materials associated with previously stated locations were characterized for asbestos and lead. The following were found to contain asbestos or lead:

Building 310 Retention Tanks:

Asbestos-containing - Overhead Steam Lines (chrysotile/Amosite);

Lead-containing - All painted materials are less than 0.5% lead by weight (BGI Lead Check Swab Detection Limit - 0.5% lead by weight).

Building 202 JANUS Reactor:

Asbestos-containing - Refer to the Boelter Environmental Consultants Site Asbestos Characterization of Building 202 to determine which materials are to be treated as asbestos-containing.

Lead-containing - The following areas are to be treated as lead-containing (greater than 0.5% lead by weight): Shutter Cylinder Platform (Blue Paint), Blocks from Low Flux Room (Red Paint), Floor Blocks in room J-105 (Gray Paint w/ Red Undercoating), Air Tanks from rooms J-101/-010 (Green Paint), and the Gasometer from room J-010 (Gray Paint). All other associated materials are less than 0.5% lead by weight.

Building 211 60" Cyclotron:

Asbestos-containing - Refer to the Boeller Environmental Consultants Site Asbestos Characterization of building 211 to determine which materials are to be treated as asbestos-containing.

Lead-containing - The following materials are to be treated as lead-containing (greater than 0.5% lead by weight): Westinghouse Transformer/Rectifier in room A-119 (Blue/Gray Exterior and Green Interior), and the AB Quality E-PWR-A2 in room A-119 (Gray paint). All other associated material are less than 0.5% lead by weight.

For materials which have been identified as asbestos-containing and lead-containing, employees working near the identified material should be notified and precautions should be taken during the removal of the material.

For the asbestos-containing material, only PFS/FPE-administered licensed asbestos removal contractors or qualified EWM-Waste Management Mechanics can handle, repair, and/or remove the identified material.

Demolition or renovation work is required to meet the provisions of the OSHA Lead Standard, which specifies maintaining exposures below 50 μ g/m³ with certain items triggered at an Action Level of 30 μ g/m³. No specific definition of "lead-containing paint" is included in the standard.

However, an amendment to the Toxic Substance Control Act (TOSCA), PL 102-550, SEC 1021, Title IV, "Lead Exposure Reduction," defines lead-based paint as a surface coating containing lead in excess of 1 mg/cm², or 0.5% lead by weight. The Consumer Product Safety Act (CPSA), 16 CFR 1303, defines lead-containing paint as that in excess of 0.06% by weight. The survey results indicate which materials have paint with lead. The Steel Structures Painting Council reports that many contractors use the 0.06% level to define their lead projects.

Operations presumed by OSHA to present the highest air contaminated potential are abrasive blasting, welding, cutting, and torch-burning (these may produce exposure levels greater than 2500 micrograms per cubic meter of air). Therefore, precautions are recommended for these operations where the paint concentration is greater than 0.06% lead and where torch-cutting or dusty methods will be used in the demolition. A HEPA-filtered local exhaust unit should be used to capture fume from torch-cutting. If feasible, the lead-containing paint can be chemically stripped from the area needing to be cut or welded. The paint must be stripped down to bare metal and expose an area around the projected cut or weld so that the torch or arc will not come in contact with paint. Workers should use NIOSH-approved respirators for lead dust and fumes.

Painted materials with a negative result from the BGI Lead Check Swab can exceed the CPSA definition. Depending on demolition activities, a bulk sample of the paint from these materials may need to be taken and analyzed to a lower detection limit. Contact Industrial Hygiene (2-3310) to determine if bulk samples need to be taken of the material in question.

The demolition contractor should assure that employees are informed of the Lead Standard requirements and that good work practices are followed to keep the job site as free as practicable from accumulation of lead.

The results of this survey, pertaining to lead-containing paint, should be discussed with Mark Kamiya - EWM. He will assist you in determining whether or not the waste from this project will be considered hazardous.

If you or your employees have any questions regarding the results, please contact Industrial Hygiene at 2-3310 or 2-9856.

ct: J. Woodring

R. Wynveen

File: Building 310, 202, and 211

Lead-ANL Projects
Asbestos-ANL Projects

Date:

August 21, 1996

To:

C. Sholeen

ESH-HP

From:

D. R. Lucas

ESH-Industrial Hygiene

STATE OF THE PARTY OF THE PARTY

G. E. Myers

ESH-Industrial Hygiene

Subject:

INDUSTRIAL HYGIENE SURVEY SUMMARY REPORT

Operation Surveyed:

Gray paint off of tanks

Location:

Building 310, Rooms A-026, A-038, A-050, and

A-062

Material or Hazard Measured:

Lead

Method of Measurement:

Bulk Sample

Sample Description and Results:

Sample Number (Book N39-23-)	Location/Description	Lead Test Result Flame AA
22006	Gray paint off of tanks	0.02%

Applicable Standards:

The Consumer Product Safety Act defines a "lead-containing paint" as a paint in which the lead content exceeds 0.06% by weight.

OSHA Lead Standard, 1926.62 (Construction)

Recommendations:

No recommendations at this time.

Date of Survey: Surveyed by:

Lab Analysis by:

August 1, 1996 D. R. Lucas R. Kasper ct:

D. Geraghty C. Grandy

J. Woodring R. Wynveen

File:Bldg. 310

drl.ihs310

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE #	ANALYTICAL RESULT
001	STEAM SUPPLY PIPE INSULATION	TSI	22657	3-5% CHRYSOTILE / 5-10% AMOSITE
			22658	NA
			22659	NA
002	STEAM SUPPLY PJC	TSI	22660	30-40% CRYSOTILE / 1-3 % AMOSITE
			22661	NA
			22662	NA
03	LAB COLD PIPE INSULATION	TSI	22663	1-3% CHRYSOTILE
			22664	NA
			22665	NA
04	LAB COLD PJC	TSI	22666	30-40% CHRYSOTILE / 1-3% AMOSITE
			22667	NA
			22668	NA
05	LAB HOT PIPE INSULATION	TSI	22669	30-40% CHRYSOTILE
			22670	NA
			22671	NA

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE#	ANALYTICAL RESULT
007	LAB HOT RETURN PIPE INSULATION	TSI	22675	20-30% CHRYSOTILE
			22676	NA
			22677	NA
009	STORM DRAIN PIPE INSULATION	TSI	22681	3-5% CHRYSOTILE
			22682	NA
.5.	\		22683	NA
010	STORM DRAIN PJC	TSI	22684	20-30% CHRYSOTILE / TRACE AMOSITE
			22685	NA
			22686	NA
011	CONDENSATE RETURN PIPE INSULATION	TSI	22687	40-50% CHRYSOTILE
			22688	NA
			22689	NA
012	CONDENSATE RETURN PJC	TSI	22690	20-30% CHRYSOTILE / TRACE AMOSITE
			22691	NA
			22692	NA

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE#	ANALYTICAL RESULT
013	DOMESTIC COLD PIPE INSULATION	TSI	22693	TRACE CHRYSOTILE
			22694	1-3% CHRYSOTILE
			22695	NA
014	DOMESTIC COLD PJC	TSI	22696	20-30% CHRYSOTILE
			22697	· NA
			22698	NA
015	CONDENSATE TANK	TSI	22699	10-20% CHRYSOTILE / 1-3% AMOSITE
			22700	NA
			22701	NA
016	AIR CONDITION DUCT	VIB	22702	80-90% CHRYSOTILE
			22703	NA
			22704	NA
017	AIR CONDITION CORK INSULATION & SEAMS	TSI	22705	ND
			22706	ND
			22707	ND

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE#	ANALYTICAL RESULT
018	DOMESTIC HOT PIPE INSULATION	TSI	22708	40-50% CHRYSOTILE
			22709	NA
			22710	NA
019	DOMESTIC HOT PJC	TSI	22711	50-60% CHRYSOTILE / TRACE AMOSITE
			22712	NA
			22713	NA
020	12X12 WHITE FLR TILE - CREAM STREAKS	FT	22714	1-3% CHRYSOTILE
			22715	NA
			22716	NA
021	12X12 WHITE FLR TILE - CREAM STREAKS MASTIC	FTM	22717	ND
			22718	ND
		28503	22719	ND
022	12X12 BLACK FLR TILE	ВВ	22720	1-3% CHRYSOTILE
			22721	NA
			22722	NA

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE #	ANALYTICAL RESULT
023	12X12 BLACK FLR TILE MASTIC	ВВМ	22723	ND
			22724	ND
			22725	ND
024	6" BLACK BASEBOARD	ВВ	22726	ND
			22727	ND
			22728	ND
025	6" BLACK BASEBOARD MASTIC	ввм	22729	ND
			22730	TRACE AMOSITE
			22731	ND
026	2X4 LAYIN CEILING TILE - SMALL WORMS & DOTS	ст	22732	ND
			22733	ND
			22734	ND
27	12X12 GRAY FLR TILE - WHITE STREAKS	FT	22735	1-3% CHRYSOTILE
			22736	NA
			22737	NA

BUILDING

ISA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE#	ANALYTICAL RESULT
)28	12X12 GRAY FLR TILE - WHITE STREAKS MASTIC	FTM	22738	ND
			22739	ND
			22740	ND
29	BROWN BASEBOARD	ВВ	22741	ND
			22742	ND
			22743	ND
30	BROWN BASEBOARD MASTIC	ввм	22744	ND
			22745	ND
			22746	ND
031	RED CAULK	SM	22747	ND
			22748	ND
			22749	ND
032	FIRE DOOR	DOOR	xxxx	ASSUMED ACM
			xxxxx	ASSUMED ACM
			xxxx	ASSUMED ACM

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE #	ANALYTICAL RESULT
033	DRYWALL	DW	22750	ND
			22751	ND
			22752	ND
034	RUST CARPET MASTIC	СМ	22753	ND
			22754	TRACE CHRYSOTILE
	· · · · · · · · · · · · · · · · · · ·		22755	1-3% CHRYSOTILE
)35	2X4 PATTERENED LAYIN CEILING TILE	СТ	22756	ND .
	CELEINO TIEE		22757	ND
			22758	ND .
036	9X9 RED FLOOR TILE	FT	22759	3-5% CHRYSOTILE
			22760	NA
			22761	NA
37	9X9 RED FLOOR TILE MASTIC	FTM	22762	5-10% CHRYSOTILE
	MOA CERMERA		22763	NA
			22764	NA

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE#	ANALYTICAL RESULT	
038	2X4 LAYIN DIVIDED CEILING TILE	СТ	22765	ND	
			22766	ND	
			22767	ND	
039	4" BLACK BASEBOARD	ВВ	22768	ND	
			22769	ND	
			22770	ND	
040	4" BLACK BASEBOARD MASTIC	ВВМ	22771	ND	
			22772	ND	
			22773	ND	
041	12X12 ACOUSTIC WALL TILE	SM	22774	ND	
			22775	ND	
			22776	ND	
042	BLUE CARPET MASTIC	СМ	22777	1-3% CHRYSOTILE	
			22778	NA	
			22779	NA	

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE#	ANALYTICAL RESULT	
043	2X2 LAYIN CEILING TILES SHORT WORMS & DOTS	СТ	22780	ND	480
			22781	ND	
			22782	ND	
044	STRIPED BROWN CARPET- MASTIC	СМ	22783	ND	
			22784	ND	
			22785	ND	
045	YELLOW CARPET - MASTIC	СМ	22786	ND	
			22787	ND	
			22788	ND	
046	LIGHT GREEN CARPET MASTIC	СМ	22789	ND	
			22790	ND	
			22791	ND	
047	BROWN CARPET MASTIC	СМ	22792	ND	
			22793	ND	
			22794	ND	

BUILDING

HSA#	MATERIAL DESCRIPTION	MATERIAL TYPE	SAMPLE#	ANALYTICAL RESULT	
048	SPECKLED YELLOW, BROWN, ORANGE CARPET MASTIC	СМ	22795	ND	
			22796	ND	
			22797	ND	
049	LIGHT BROWN BASEBOARD	ВВ	22798	ND	
			22799	ND	
			22800	ND	en Julia.
050	LIGHT BROWN BASEBOARD MASTIC	ВВМ	22801	ND	
			22802	ND	
			22803	ND	

Author: Michael Bonkalski at ESH_200

Date: 9/26/96 3:42 PM Priority: Normal TO: Dolores Geraghty CC: James Woodring

Subject: Lead Check on Paint

---- Message Contents -----

Date: September 26, 1996

To: Charlotte Sholeen ESH-HP
From: Michael Bonkalski ESH-IH

Subject: Industrial Hygiene Survey Summary Report

Operation: Lead Check on Paint from Walls and Retention Tanks

Location: Building 310, Retention Tank Rooms

Material: Lead

Sample Results:

The survey was performed on 9/26/96 using a TN Technologies XRF Pb Analyzer in order to determine lead levels in paint prior to D&D work involving the Building 310 retention tanks.

Results from the survey indicate that lead is not present in the gray paint on the walls and the retention tanks.

Applicable Standards:

None

Recommendations:

No recommendations based on results.

IENNELEC LB4000 COUNT STARTED 8-19-96 .

100 MIN COUNTS

			310 195		310 197		310 198		
	310 194				********	*******	**********	******	
	XXXXXXXXXXXX		XXXXXXXXXXXX						
	A1	A1	A2	A2	A3	A3	A4	A4	
	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	
	136	1497	122	1607	148	1528	98	1278	8-19-96 18:05
	119	1508	134	1585	152	1609	120	1280	8-19-96 19:45
2	128	1444	136	1527	151	1530	97	1245	8-19-96 21:26
4	155	1469	154	1600	148	1598	121	1220	8-19-96 23:06
5	136	1491	138	1631	151	1549	112	1193	8-20-96 0:47
	139	1506	156	1605	145	1490	102	1260	8-20-96 2:27
6	134	1474	137	1540	160	1562	109	1282	8-20-96 4:08
8	149	1506	150	1616	138	1570	104	1205	8-20-96 5:49
9	151	1472	151	1663	156	1560	117	1251	8-20-96 7:29
AV6	134.9	1485.2	142.0	1597.1	149.9	1555.1	108.9	1246.0	
	10.2	20.6	10.7	39.9	6.0	34.4	8.7	31.4	
OBS_SD	0.9	0.5	0.9	1.0	0.5	0.9	0.8	0.9	
OBS/EXP	1.349	14.852	1.420	15.971	1.499	15.551	1.089	12.460	
CFM	0.039	0.128	0.040	0.133	0.041	0.131	0.035	0.118	
STD_ERR	0.037	1.014	0.030	0.947	0.032	1.264	0.033	0.912	
BKG NET CPM	1.317	13.838	1.390	15.024	1.467	14.287	1.056	11.548	

The elements of this data set are all within 4 Standard Deviations of the mean.

TENNELEC LB4000 COUNT STARTED 8-19-96 , 100 MIN COUNTS

	310 199		310 200		310 201		310 202		
	********	XXXXXXXX	XXXXXXXXXXX	XXXXXXXX	********	xxxxxxxx	XXXXXXXXXXXX	XXXXXXXX	
	B1	B1	B5	B2	B3	B3	B4	84	
	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	
1	103	1275	124	1333	120	1374	74	763	8-19-96 18:05
5	114	1323	117	1359	116	1342	85	750	8-19-96 19:45
3	111	1300	111	1303	128	1313	84	762	8-19-96 21:26
4	114	1303	117	1301	117	1340	86	703	8-19-96 23:06
5	116	1295	111	1321	109	1383	83	769	8-20-96 0:47
6	112	1271	125	1373	113	1337	80	723	8-20-96 2:27
7	111	1333	103	1309	118	1337	89	689	8-20-96 4:08
8	98	1347	102	1281	105	1368	79	734	8-20-96 5:49
9	113	1328	92	1368	125	1384	76	757	8-20-96 7:29
AVG	110.2	1308.3	111.3	1327.6	116.8	1353.1	81.8	738.9	
OBS_SD	5.5	24.7	10.2	30.9	6.8	23.4	4.6	26.9	
OBS/EXP	0.5	0.7	1.0	0.8	0.6	0.6	0.5	1.0	
CPM	1.102	13.083	1.113	13.276	1.168	13.531	0.818	7.389	
STD_ERR	0.035	0.121	0.035	0.121	0.036	0.123	0.030	0.091	
BKG	0.031	0.958	0.031	1.035	0.035	0.958	0.029	0.961	
NET CPM	1.071	12.125	1.082	12.241	1.133	12.573	0.789	6.428	

The elements of this data set are all within 4 Standard Deviations of the mean.

TENNELEC LB4000 COUNT STARTED 8-19-96 ,

100 MIN COUNTS

	310 203		******	XXXXXX	310 204	(XXXXXX	310 205 *********	******	
		Cl	CS	CS	C3	C3	C4	C4	
	C1 ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	
	97	750	5	1046+	168	983	90	1071	8-19-96 18:05
1		748	3	169+	155	976	90	1090	8-19-96 19:45
5	94	712	1	108+	165	938	107	1135	8-19-96 21:26
3	102	770	2	90+	188	982	101	1086	8-19-96 23:06
4	72			2+	176	940	110	1023	B-20-96 0:47
5	102	759	5	225	151	919	115	1112	8-20-96 2:28
ó	76	740	3	137*	180	916	114	1115	8-20-96 4:08
7	83	750	4	834	171	949	106	1092	8-20-96 5:49
8	80 81	748 775	4	120+	175	997	- 112	1134	8-20-96 7:29
AVG	87.4	750.2	3.1	220.0	169.9	955.6	105.0	1095.3	
OBS_SD	10.8	17.2	1.4	521.6	11.1	28.1	9.0	32.8	
OBS/EXP	1.2	0.6	0.8	19)2	0.8	0.9	0.9	1.0	
CPM	0.874	7.502	0.031	a.300	1.699	9.556	1.050	10.953	
	0.031	0.091	0.006	0.951	0.043	0.103	0.034	0.110	
STD_ERR	0.036	0.901	0.029	3.173	0.035	0.861	0.030	0.897	
BKG NET CPM	0.838	6.601	0.002	-0.873	1.664	8.695	1.020	10.056	

This data contains elements which are 4 Standard Deviations DUTSIDE of the mean.

TENNELEC LB4000 COUNT STARTED 8-19-96 , 100 MIN COUNTS

	310 206		310 207		310 208		310 209		
	XXXXXXXXXXXX	XXXXXXXX	XXXXXXXXXXXX	XXXXXXX	XXXXXXXXXXX	XXXXXXXXX	*********	XXXXXXXX	
	01	DI	02	02	D3	D3	D4	D4	
	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	
1	122	1326	121	1634	105	1578	76	1499	8-19-96 18:05
5	126	1225	122	1646	89	1549	95	1481	8-19-96 19:45
3	95	1216	122	1599	93	1619	92	1496	8-19-96 21:26
4	109	1209	120	1573	108	1573	94	1440	8-19-96 23:06
5	102	1324	108	1573	105	1633	124	1522	B-20-96 0:47
6	124	1270	112	1575	119	1537	111	1518	8-20-96 2:27
7	112	1221	118	1561	113	1590	119	1510	8-20-96 4:08
8	101	1245	116	1599	117	1569	107	1513	8-20-96 5:48
9	120	1249	125	1601	98	1553	106	1445	8-20-96 7:29
AVG	112.3	1253.9	118.2	1595.7	105.2	1577.9	102.7	1491.6	
UBS_SD	10.7	42.0	5.1	27.3	9.8	30.0	14.1	28.7	
OBS/EXP	1.0	1.2	0.5	0.7	- 10	0.8	1.4	0.7	
CPM	1.123	12.539	1.182	15.957	1.052	15.779	1.027	14.916	
STD_ERR	0.035	0.118	0.036	0.133	0.034	0.132	0.034	0.129	
BKG	0.041	0.864	0.038	0.872	0.030	0.815	0.029	0.851	
NET CPM	1.082	11.675	1.144	15.085	1.022	14.964	0.998	14.065	

The elements of this data set are all within 4 Standard Deviations of the mean.

ENNELEC LB4000 COUNT STARTED 8-21-96 .

100 MIN COUNTS

	310 266		310 267		310 268		310 269		
	*********	*****	XXXXXXXXXXXX	XXXXXXX	XXXXXXXXXXXX	XXXXXXX	XXXXXXXXXXXX	XXXXXXX	
	Di	01	D2	02	D3	D3	D4	D4	
	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	ALPHA	BETA	
	132	980	196	1541	223	1510	212	1534	8-21-96 17:36
2	99	950	189	1516	218	1455	207	1455	8-21-96 19:16
2	116	958	195	1483	238	1500	227	1541	8-21-96 20:57
3	126	932	175	1537	216	1490	243	1493	8-21-96 22:38
9	111	993	195	1532	555	1516	203	1505	8-22-96 0:18
5	125	1003	198	1514	184	1500	221	1517	8-22-96 1:59
6	123	998	177	1592	229	1534	239	1542	8-22-96 3:39
7		1006	195	1530	224	1492	193	1505	8-22-96 5:20
8	116	941	192	1488	216	1492	215	1479	8-22-96 7:00
	2	973.4	190.2	1525.9	218.9	1498.8	217.8	1507.9	
AVE	116.7	26.9	8.0	30.4	14.0	20.4	15.5	27.7	
OBS_SD	10.5		0.6	0.8	0.9	0.5	1.1	0.7	
OBS/EXP	1.0	0.9	1.902	15.259	2.189	14.988	2.178	15.079	
CPH	1.167	9.734	0.046	0.130	0.049	0.129	0.049	0.129	
STD_ERR	0.036	0.104		0.130	0.029	0.831	0.032	0.857	
BKG	0.041	0.872	0.039		2.160	14.157	2.146	14.222	
NET CPH	1.126	8.862	1.863	14.374	E.100	141107			

The elements of this data set are all within 4 Standard Deviations of the mean.

```
MAX/UMS Nuclide Identification Report V2.2 Generated 19-AUG-1996 12:33:54
                                         310 Retention Room AFS
            : $DISK1:[USER]NORB3.CNF:1
Configuration
                                                           # 194,195, 197 -> 209
           : PEAK V15.8, PEAKEFF V2.1, ENBACK V1.2, NID V2.1
Analyses by
            : 1-MAR-1996 12:00:00 Acquisition date : 16-AUG-1996 16:01:30
Sample date
Sample ID : 310 AF
                           Sample quantity : 1.0000 M3
            : AD
                              Sample geometry : 15 FILTERS
Sample type
Detector name : 74 cc
                             Detector geometry:
                             Elapsed real time: 2 18:40:09.00 0.0%
Elapsed live time: 2 18:40:00.00
Energy tolerance: 1.40 keV
                             Half life ratio : 8.00
                             Systematic Error :
                                                  0.00 %
Errors propagated: No
                              Efficiencies at : Peak Energy
Efficiency type : Spline
Abundance limit : 50.00
Post-NID Feak Search Report
            Area Bkgnd FWHM Channel Left Pw %Err Fit Nuclides
It Energy
            210
                   5656 1.66
                             31.54
                                    31 6 57.3
Λ
    30.91
0
   46.39k
            2466
                   6886 1.86
                            47.03
                                    43 9 7.5
   75.68±
             222
                   6914 4.15 76.34
                                    72 10 96.7
                                                     RA-226
                                                     TH-228
  238.17★
             300
                  2826 1.91 238.94 233 12 41.2 3.22E+00 TH-228
3 241.044
             101
                  2356 1.81 241.82 233 12106.2
                                                     RA-226
0
   294.23k
           140
                  3567 1.78 295.05 292 8 94.0
                                                     RA-226
0 337.76±
            26
                  2255 1.99 338.63 336 7420.8
0 351.70*
             196
                  2696 2.36 352.59 348 10 66.6
   472.52
            131
                   785 1.31 473.56 472 19 30.4 2.27E+00
                  1040 1.93 478.40 472 19 0.9
1000 2.19 584.28 580 9339.1
918 2.36 610.59 608 8240.6
                                               BE-7
6
   477.35
           16009
           25
   583.06*
                                                     TH-228
   609.33k
                                                     RA-226
             36
   661.56
                   862 2.15 662.91 658 9 4.2
           1611
                                                     CS-137
   846.33k
            100
                   687 2.26 848.06 842 12 66.6
                   450 2.41 971.26 967
0 969.23k
             2
                                       8****
0 1172.24
             127
                   465 3.50 1174.83 1168 12 35.1
                                                     CO-60
0 1237.14
             50
                   403 2.61 1239.93 1236 10 75.4
                                                     RA-226
          118
0 1331.68
                   328 2.07 1334.78 1330 11 32.4
                                                     CO-60
0 1460.65* 419
                   246 2.70 1464.19 1459 12 13.9
                                                     K-40
26210
            2466
                                               = 214 ± 16 dpm
          4000 × 0.0405 × 0.071
               3495-3476
                                                -= 0.2 ± 0.7
          4000 × 0.359 × 0.0836
                  16009
                                             = 1304 ± 12
            4000 × 0.104
              16011
                                              == 21.7 ± 0.9
             4550 x 0.851 x 0,0218
             299-193 +246-140
                                               -= 2,5±0.4
           4000 x 1.99: x 0.0107
```

COUNTER DATA SHEET

ALPHA-	BETA COUNTING	3			A. S. SER		
☐ SPIKED	UNS	PIKED	SPIKED SAMPLE	PERCENT I	RECOVERY	DETERMIN	ATION
Counter Numbers	18	33	Counter Numbers				
Total a Counts	11	22		ALPHA	BETA	ALPHA	BETA
Counting Time	30	30	Standard Solution	29.9	983	29.9 50 =	983
Total α c/m	.37	.73	d/m/ml + 50 = Known d/m/ml	.598	50 1 9.66	.598	19.66
Background	0.3	0.4		15 12			
Net α c/m	.07	.33	Spiked Sample α & β				
ml Sample	10	10	Results in d/m/ml				
α c/m/ml	1007	.033					
α Yield Factor	1,96	1.96	Unspiked sample α & β Results (from				
α d/m/ml	.014	.065	PFS-11)		-		
					S. Francisco		
Total β Counts	1676	1622	Spiked d/m/ml minus Unspiked d/m/ml =				
Counting Time	30	30	Recovered d/m/ml			and the same	
Total β c/m	55.87	54.07			Constant of the last of the la		
β Background	50.4	48.0	Recovered d/m/ml + Known d/m/ml x 100 =				
BKGD + Net α c/m	50.47	48.33	Percent Recovery				
Net β c/m	5.40	5,74		•	•		
ml Sample	10	10		REM	ARKS		-
β c/m/ml	1540	.374					
β Yield Factor	1.35	1.35					
β d/m/ml	1.729	.773			10000		
REMARKS		2 - (2					
Au	- d -	0.040				93.395	
Ana	2.13-0	.752			- T- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	The state of	

				6303
Date: 6/2	35/96 Bldg: 3	10 CL	. Sample:	
Type of Sar	mple: Waten	frem	floor	under ReT
Gallons: >	110 Req	uestor:	uliis	Bment
ANALYSES Total Sc	mple: <u>Waten</u> Tank Req DESIRED: Ψα, slids, Volume f	β, □pH, or 20% Botto	Hg,	Ammonia Nitrogen
Other:				
Date Analyz Results:	2-0.04 3-0.75 d	don lus	est: Acc	Macan
Size	Determination	Reading	Result	
		Total So	lids	Total Solids
Dish Numbe	er			
Wt. Dish + V	Vet Sample			,,
Wt. Dish				
Wt. Sample				
Wt. Dish + D	ry Sample			,
Wt. Dish				
Wt. Dry Sam	ple			
Remarks and	d Calculations:			
SH-228 (6.02)				

COUNTER DATA SHEET

ALPHA-	BETA COUNTIN	IG	SPIKED SAMPLE	DEDCENT	PECOVERY	DETERMIN	ATION
☐ SPIKED	□ UN	SPIKED	SFIRED SAMIFLE	renceivi i	RECOVERT	DETERMIN	ATION
Counter Numbers	1	2	Counter Numbers				
Total α Counts	9	19		ALPHA	BETA	ALPHA	BETA
Counting Time	30	30	Standard Solution d/m/ml + 50 = Known	29.9 50	983 50	29.9 50 =	983
Total α c/m	30	1.63	d/m/ml	.598	19.66	.598	19.6
Background	103	103					
Net a c/m	627	.60	Spiked Sample α & β				
ml Sample	20	05	Results in d/m/ml	Consession Consession	05		
α c/m/ml	.0135	0300					
α Yield Factor	1.96	1.96	Unspiked sample α & β Results (from		The second		
α d/m/ml	.026	1059	PFS-11)			759.53	
					-		
Total β Counts	1146	1295	Spiked d/m/ml minus Unspiked d/m/ml =				
Counting Time	30	30	Recovered d/m/ml	37.3			
Total β c/m	38.20	43.17					
β Background	39.7	40.7	Recovered d/m/ml + Known d/m/ml x 100 =				. 1,
BKGD + Net α c/m		41,70	Percent Recovery	,			
Net β c/m		1,87					
ml Sample	20	20		REM	ARKS		
β c/m/ml	200	.0935					
β Yield Factor ,	1.35	1.35				o with the same	
β d/m/ml		-1262			100		
REMARKS					100	1,229	35.53
Auc.	04-0	,043				1.02)	
Ane. 0.063					the party	Metry .	

A. W.7-A	-96 REQUES	T FOR AN	ALYSIS	6310
Date: 7-20	Bldg: 30	6CL.	Sample:	
Type of Sam	ple: WATER			
Gallons:	60 nL Requ	uestor:	SHARLOT	SHOLEEN
ANALYSES Total Sol	DESIRED: Σα, lids, Volume for	\geq β , \subseteq pH, or 20% Bottor	☐ Hg, ☐	Ammonia Nitroge
Other:				
Date Analyzo Results:	d - 0.040 B - 0.060	Analy Inful 1.	st:	
Size	Determination	Reading	Result	
			, i	
				1
		Total So	olids	Total Solids,
Dish Numb				
	Wet Sample			
Wt. Dish				
Wt. Sample				
Wt. Dish	Dry Sample			
Wt. Dry Sa	mole			
	nd Calculations:			
ESH-228 (6-93)				

0,1 mlin

Ultima Gold

02 Jul 96 15:38

Protocol #: 3

3H, 14C, GROSS

Page #1 User :

Time: 2.00

Region C:

Nuclides: 3H14C GROS Quench Sets

Data Mode: Dual DPM

Low Energy: 3H

Background Subtract: None

High Energy: 14C

LCR 25% BKG LL UL 0.0 - 12.0 0.0 0.00 Region A: Region B: 12.0 - 156 0.0 0.00 160 - 2000 0.0 0.00

Quench Indicator: tSIE/AEC Ext Std Terminator: Count

Luminescence Correction On High Sensitivity Count Mode On

5 5 5 5			
tSIE	%EffA	tSIE	%EffA
1016.4	64.96	754.34	58.58
593.58	52.82	444.73	45.22
344.44	38.37	269.05	31.74
201.88	24.00	156.86	17.97
126.54	13.75	103.23	10.34

tSIE	ZETTB	tSIE	%EffB
1016.4	4.54	754.34	4.795
593.58	5.00	444.73	5.07
344.44	5.02	269.05	4.67
201.88	4.20	156.86	3.58
126.54	2.91	103.23	2.55

02 Jul 96 15:	39			Page #2
Protocol #: 3	ЗН,	14C, GROSS	1	Use
1018.3 619.36 366.47 203.21 131.31	11.89 463.7 11.01 278.1 10.06 160.4	8 12.18 1 11.56 6 10.55 8 9.84 3 9.58	1018.3 84.35 619.36 83.49 366.47 82.80 203.21 79.35 131.31 74.17	782.88 83.87 463.71 82.70 278.16 81.01 160.48 76.55 105.83 70.39
S# TIME 1 2.00 2 2.00 3 2.00	CPMA CPMB 8.50 8.00 5.00 10.50 5.00 7.00	CPMC DPM DP 11.00 15.99 7.50 7.64 7.00 8.28	8.69 473.50 12.22 474.11	LUM # 1 2 # 2 0 Blank

ANALYSIS CERTIFICATE OF

Service Location HERITAGE ENVIRONMENTAL SERVICES, INC. COMMERCIAL LABORATORY OPERATIONS 1319 MARQUETTE DRIVE			Lab ID C179131
ROMEOVILLE, IL 60441 (708)378-1600	Printed Sampled 22-JUL-96 25-JUN-96		

Report To

R. ROSE ARGONNE NATIONAL LABORATORIES 9700 CASS AVENUE PFS/306 ARGONNE, IL 60439-4819

Bill To

R. ROSE ARGONNE NATIONAL LABORATORIES PFS/306 9700 SOUTH CASS AVENUE ARGONNE, IL 60439-4819

Sample Description

CLIENT ID: 310-A-038-FLI BOTTLES: #1,2 & 3 SITE: ARGONNE LAB BLDG 310 S.F.

H (AQUEOUS) SW846-9040A Analysts A. SNAPP Analysis Date: 27-JUN-96		Test: G607.5.0	1000
Parameter PH	Result 8.16	Det. Limit 0.1	Units Std. Unit
OTAL AVAILABLE SULFIDE EXTRACTION SW 7.3.4.1 Analyst: A. SNAPP Analysis Date: 02-JUL-96	Instrument: PREP	Test: P116.2.0	end-ept
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50.26 250	Det. Limit	Units Grams mL
SULFIDE SW846-9030A Analyst: A. SWAPP Prep: TOTAL AVAILABLE SULFIDE EXTRACTION SW 7.3.4.1 P116.2.0		Test: G110.4.0	
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/kg
CYANIDE, TOTAL AVAILABLE (MANUAL) SW 7.3.3.2 Analyst: J. MATTEI Analysis Date: 03-JUL-96 Prep: TOTAL AVAILABLE SULFIDE EXTRACTION SW 7.3.4.1 P116.2.0		Test: G115.1.	The same
Parameter CYANIDE	Result BDL	Det. Limit 0.05	mg/kg
ELASH BOINT BY DENSKY-MARTENS CLOSED TESTER A	STM D-93 Instrument: PENSKY MARTE	NS Test: G509.9.	0
Analyst: T. MAKUM Analysis Date: 03-JUL-96 Parameter FLASH POINT	Result > 215	Det. Limit	Units Degrees

HERITAGE ENVIRONMENTAL SERVICES, INC.

Sample ID: C179131 310-A-038-FLI

Parameter	Result	Det. Limit	Units
TOTAL SAMPLE WEIGHT	NA		Grams
LIQUID FRACTION (GRAMS)	NA NA		Grains
EYTDACTED SAMDIF	I NA		Grams
SOLIDS	NA		
O E MM CIEVE TECT	I NA		Passed
INITIAL PH	NA NA		Std. Unit
ADJUSTED DH	· I NA		Std. Unit
BUFFER SOLUTION PH	NA NA		
CTNAI DU	I NA		Std. Unit
VOLUME BUFFERED SOLUTION	NA NA		
VOLUME EXTRACT FILTERED	I NA		mL
VOLUME LIQUID (ADD BACK)	NA NA		mL:
TOTAL VOLUME FILTRATE	NA		mL
AMBIENT TEMPERATURE	NA NA		Degrees C
INITIAL TIME	l NA		HRS
FINAL TIME	NA NA		HRS

FAA OR ICP ACID DIGESTION (LEACHATE) SW84 Analysts B. EBERHARY Analysis Date: 03-JUL- Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERB	96 Instrument: PREP	Test: P130.8.	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 50	Det. Limit	Units mL
FINAL WEIGHT OR VOLUME	50		mL

	Date: 03-JUL-96 Instrument: ICP	Test: M604.7.0
Prep: FAA OR 1CP ACID DIGESTION (LEACHATE) Prep: TOX CHAR LEACHING PROCEDURE (ICLP W/		30.00
Parameter	Result	Det. Limit Units
ARIUM	· BDL	2.0 mg/L
DDITION 1		mg/L
AMPLE	0.1457	Conc
	1,063	Conc
ILUTION	1	

CADMIUM ICP (1 POINT MSA) SW846-6010 Analyst: C. HERRO Analysts Date: 0 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW846	03-JUL-96 Instrument: ICP	Test: M608.7.	0
Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PE		Det. Limit	Units
ADMIUM	BDL	0.005	mg/L
DDITION 1			mg/L
AMPLE	0.0017		Conc
AMPLE + ADD 1	0.9532		Conc
TUITION	1		

CHROMIUM ICP (1 POINT MSA) SW846-6010A Analyst: C. HERRO Analysis Date: 03-JUL-96	Instrument: ICP	Test: M610.7.0)
Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW846-3010A P1 Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS)			
Parameter	Result	Det. Limit	Units
CHROMIUM	BDL	0.01	mg/L
ADDITION 1			ma/t

Page 2 (continued on next page)

HERITAGE ENVIRONMENTAL SERVICES. INC.

Sample ID: C179131 310-A-038-FLI

AMPLE Parameter	-0.0003	Det. Limit	Units Conc
AMPLE + ADD 1	0.9666		Conc
ILUTION	1		
EAD ICP (1 POINT MSA) SW846-6010A Analyst: C. HERRO Analysis Date: 03-JUL-96 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW846-3010A PI Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PEST+HERBS)	30.8.0	Test: M616.7.	
Parameter LEAD	Result	Det. Limit 0.05	
ADDITION 1	1.0	***************************************	mg/L Conc
SAMPLE	-0.0104 0.9654		Conc
SAMPLE + ADD 1 DILUTION	1		
SILVER ICP (1 POINT MSA) SM846-6010A Analysis C. HERRO Analysis Date: 03-JUL-94 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW846-3010A P Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PEST-HERBS		Test: M 630.7.	a
Parameter	Result	Det. Limit	Units
SILVER	BDL	0.02	
ADDITION 1	1.0		mg/L Conc
SAMPI F	-0.0055 0.9275		Conc
SAMPLE + ADD 1 DILUTION	1		
ARSENIC ICP (1 POINT MSA) SW846-6010A Analysis C. HERRO Analysis Date: 03-JUL-9	O TUBEL CHICATES TOL	Test: M603.7	.0
ARSENIC LUP (1 PUINT MSA) 3040-001040 Analysis C. MERRO Analysis Date: 03-JUL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHAIE) SW846-3010A P Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS	130.8.0 5) SW846-1311 P107.2.0		
Analysts C. HERO Analysis Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHAIE) SM846-30IAD P Prep: TOX CHAR LEACHING PROCEDURE (TCLP M/ORG+PEST+HERBS Parameter	130.8.0 5) SV846-1311 P107.2.0 Result	Det. Limit	Units
Analysts C. HERO Analysis Date: 03-30L-9 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SUB46-3010A P Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PESY-HERBS Parameter ARSENIC	130.8.0 5) SW846-1311 P107.2.0 Result	Det. Limit	Units mg/L mg/L
Analysts C. HERRO Analysis Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SM846-3010A P Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PESY+HERBS Parameter ARSENIC ADDITION 1	130.8.0 130.8.0 130.8.0 Result BDL 1.0 0.0083	Det. Limit	Units mg/L mg/L Conc
Analysts C. HERRO Analysis Dates 03-30L-9 Prep: PAA OR ICP ACID DIGESTION (LEALMAIE) SM84G-30IAD Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PEST-HERBS Parameter ARSENIC ADDITION 1 SAMPLE	130.8.0 5) Sw846-1311 P107.2.0 Result BDL 1.0	Det. Limit	Units mg/L mg/L
Analysts C. HERRO Analysis Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SM846-3010A P Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PESY+HERBS Parameter ARSENIC ADDITION 1	130.8.0 130.8.0 130.8.0 Result BDL 1.0 0.0083	Det. Limit	Units mg/L mg/L Conc
Analysts C. HERRO Analysts C. HERRO Prep: FAA OR ICP ACID DIGESTOR (LEACHAIE) SM846-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP M/ORG+PEST+HERBS Parameter ARSENIC ADDITION 1 SAMPLE SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SW846-6010A Analysts C. HERRO Analysts Date: 03-401-6	130.8.0 Result BDL 1.0 0.0083 0.9824 1	Det. Limit	Units mg/L mg/L Conc
Analysts C. HERRO Analysts Date: 03-3UL-9 Prep: PAA OR ICP ACID DIGESTION (LEACHAIE) SUB46-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS PARAMETE ARSENIC ADDITION 1 SAMPLE SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SW846-6010A Analysts C. HERRO Analysis Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW46-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERB)	Result BDL 1.0 0.0083 0.9824 1 Instrument: ICP P130.8.0 Result	Det. Limit 0.05	Units mg/L mg/L Conc Conc
Analysis C. HERRO Analysis Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHAIE) SMB46-30IOA P Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS Parameter ARSENIC ADDITION 1 SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SW846-60IOA Analysis Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SMB46-30IOA I Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS SELENIUM Parameter	10.8.0 Result BDL 1.0 0.0083 0.9824 1	Det. Limit 0.05 Test: M628.	Units mg/L mg/L Conc Conc units mg/L mg/L mg/L mg/L
Analysts C. HERRO Analysts C. HERRO Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SUB46-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS ARSENIC ADDITION 1 SAMPLE SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SW846-5010A Analysts C. HERRO Analysts C. HERRO Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW46-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERB) Parameter	Subsection Provided Provide	Det. Limit 0.05 Test: M628.	units mg/L conc Conc Units mg/L mg/L Conc Conc Units mg/L conc Conc Conc Mg/L conc Mg/L Conc Mg/L Conc
Analysts C. HERRO Analysts C. HERRO Prep: FAA OR ICP ACID DIGESTION (LEACHAIE) SMB46-3010A Parameter ARSENIC ADDITION 1 SAMPLE SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SW846-6010A Analysts C. HERRO Analysis Date: 03-JUL-5 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SMB46-3010A i Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERS) SELENIUM ADDITION 1	10.8.0 Result BDL 1.0 0.0083 0.9824 1	Det. Limit 0.05 Test: M628.	Units mg/L mg/L Conc Conc units mg/L mg/L mg/L mg/L
Analysts C. HERO Analysts Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHAIE) SUB46-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS Parameter ARSENIC ADDITION 1 SAMPLE SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SW846-6010A Analysts C. HERO Analysis Date: 03-3UL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW846-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERB) Parameter SELENIUM Parameter SELENIUM ADDITION 1 SAMPLE	Subsection Provided Provide	Det. Limit 0.05 Test: M628.	units mg/L conc Conc Units mg/L mg/L Conc Conc Units mg/L conc Conc Conc Mg/L conc Mg/L Conc Mg/L Conc
Analysts C. HERO Analysts C. HERO Prep: FAA OR ICP ACID DIGESTION (LEACHAIE) SWA64-3010A PPEP: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS ARSENIC ADDITION 1 SAMPLE SAMPLE + ADD I DILUTION SELENIUM ICP (1 POINT MSA) SW846-6010A Analysts C. HERO Analysts C. HERO Analysts C. HERO Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW846-3010A IPPEP: TOX CHAR LEACHING PROCEDURE (TCLP-W/ORG+PEST+HERB) SELENIUM ADDITION 1 SAMPLE SAMPLE + ADD 1 DILUTION MERCURY CVAA ACID DIGESTION (LEACHATE) SW	#30.8.0 BDL 1.0 0.0083 0.9824 1 66 Instrument: ICP P130.8.0 S) SU846-1311 P107.2.0 BDL 1.0 0.9824 1 804. Instrument: ICP P130.8.0 S) SU846-1311 P107.2.0 BDL 1.0 -0.0115 0.9896 1 4846-7470A 96. Instrument: PREP	Det. Limit 0.05 Test: M628.	units mg/L mg/L Conc Conc Conc Conc Conc Conc Conc Conc
Analysts C. HERRO Prep: PAA OR ICP ACID DIGESTION (LEACHATE) SWB46-3010A Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS Parameter ARSENIC ADDITION 1 SAMPLE SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SWB46-6010A Analysts C. HERRO Analysts Date: 03-JUL-9 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SWB46-3010A PREPENTED PROCEDURE (TCLP W/ORG+PEST+HERB) PARAMETER SAMPLE + ADD 1 DILUTION MERCURY CVAA ACID DIGESTION (LEACHATE) SWB46-3010A PREPENTED PROCEDURE (TCLP W/ORG+PEST+HERB) MERCURY CVAA ACID DIGESTION (LEACHATE) SWB46-3010A PREPENTED PROCEDURE (TCLP W/ORG+PEST+HERB) MERCURY CVAA ACID DIGESTION (LEACHATE) SWB46-3010A PREPENTED PROCEDURE (TCLP W/ORG+PEST+HERB) PREPENTED PROCEDURE (TCLP W/ORG+PEST+HERB) MERCURY CVAA ACID DIGESTION (LEACHATE) SWB46-3010A PREPENTED PROCEDURE (TCLP W/ORG+PEST+HERB) PARAMETER PROCEDURE (TCLP W/ORG+PEST+HERB) PARAMETER PROCEDURE (TCLP W/ORG+PEST+HERB)	Result BDL 1.0 0.0083 0.9824 1 26 Instrument: ICP P130.8.0 S) SW846-1311 P107.2.0 Result BDL 1.0 -0.0115 0.9896 1 R846-7470A 96 Instrument: PREP S) SW846-1311 P107.2.0 Result R851 R851 R851 R851 R851 R851 R851 R851	Det. Limit 0.05 Test: M628.	units mg/L mg/L conc conc units mg/L conc conc units mg/L conc conc units
Analysis C. HERRO Prep: FAA OR ICP ACID DIGESTION (LEACHAIE) SWA64-3010A PPEPENTOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS PARSENIC ADDITION 1 SAMPLE + ADD 1 DILUTION SELENIUM ICP (1 POINT MSA) SW846-6010A Analysis c. HERRO Analysis Date: 03-JUL-5 Prep: FAA OR ICP ACID DIGESTION (LEACHATE) SW846-3010A PPEPENTOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS SAMPLE + ADD 1 DILUTION MERCURY CVAA ACID DIGESTION (LEACHATE) SWA64-3010A PPEPENTOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS SAMPLE + ADD 1 DILUTION MERCURY CVAA ACID DIGESTION (LEACHATE) SWA64-3010A PPEPENTOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS SAMPLE + ADD 1 DILUTION	10.8.0 Result BDL 1.0 0.0083 0.9824 1 1.0 0.0083 0.9824 1 1.0 0.0083 0.9824 1 1.0 0.0083 0.9824 1 1.0 0.0083 0.9826 1 1.0 0.0083 0.9896 1 1.0 0.0083 0.9896 1 1.0 0.9896 1 1.0 0.9896 1 1.0 0.9896 1 1.0 0.9896 1 1.0 0.9896 1 1.0 0.9896 1 1.0 0.9896 1 1.0 0.9896 1 1.0	Det. Limit 0.05 Test: M628.	units mg/L mg/L Conc Conc Conc Conc Conc Conc Conc Conc

HERITAGE ENVIRONMENTAL SERVICES, INC.

Sample ID: C179131 310-A-038-FLI

MERCURY CVAA (1 POINT MSA) SW846-747 Analyst: M. FLETCHER Analysis Date: 0 Prep: MERCURY CVAA ACID DIGESTION (LEACHATE) SW82 Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PES	6-7470A P131.9.0	Test; M620,6.0		
Parameter MERCURY	Result BDL	Det. Limit 0.005	Units mg/L	
ADDITION 1 SAMPLE	0.00007		mg/L Conc	
SAMPLE + ADD 1 DILUTION	0.0048		Conc	

GC/MS SEPARATORY FUNNEL LIQUID-LIQUI Analyst: R, CAMPBELL, JR. Analysis Date: 0 Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PES	2-JUL-96 Instrument: PREP	Test: P233.4.	.0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	200		mL
FINAL VOLUME	1		mL

Analyst: H. QIAM Analysis Date: 0 Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRA Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PES	CT: HERBS) SW846-1311 P107.2.0	SVOA Test: 051	
Parameter	Result	Det. Limit	Unit
1,4-DICHLOROBENZENE	BDL	50	ug/L
2,4-DINITROTOLUENE	BDL BDL	50	ug/L ug/L
HEXACHLOROBENZENE `	BDL	50	ug/L
HEXACHLOROBUTADIENE HEXACHLOROETHANE	BDL	50	ug/L
NITROBENZENE	BDL	50	ug/L
PYRIDINE	BDL	250	ug/L
2-METHYL PHENOL	BDL	130	ug/L
3-METHYL PHENOL	BDL	130	
4-METHYLPHENOL	BDL	130	ug/L
PENTACHLOROPHENOL	BDL	250	ug/L
2,4,5-TRICHLOROPHENOL	BDL	130	ug/L
2,4,6-TRICHLOROPHENOL	BDL	130	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	49		% Rec
PHENOL -D5	47		% Rec
NITROBENZENE-D5	70		% Rec
2-FLUOROBIPHENYL	75		% Rec
2,4,6-TRIBROMOPHENOL	68		% Rec
TERPHENYL-D14	95		% Rec

ZERO HEADSPACE EXTRACTION (TCLP) SW846-1311 Analyst: T. MCDEVITT, JR. Analysis Date: 26-JUN-96	Instrument: PREP	Test: P108.1.	0
Parameter TOTAL SAMPLE WEIGHT	Result NA	Det. Limit	Units Grams
LIQUID FRACTION (GRAMS)	107.1		Grams mL
EXTRACTED SAMPLE PHASE ONE VOLUME (REP 0)	NA 107 1	*	Grams
PHASE TWO VOLUME (REP 1)	NA NA		mL

Page 4 (continued on next page)

Units

Std. Units

HEDITAGE	ENVIRONMENTAL	SERVICES.	INC.

FINAL PH

Analyst: M. SIMS

FINAL VOLUME

INITIAL WEIGHT OR VOLUME

DIAZOMETHANE HERBICIDE DERIVATIZATION SW846-8150B

Parameter

Analysis Date: 11-JUL-96

Prepr TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HERBS) SW846-1311 P107.2.0

TOXAPHENE

Parameter

Sample ID: C179131 310-A-038-FLI Det. Limit

Result

8.10

Analyst: G. SWANEY Analysis Date: 2 Prop: ZERO HEADSPACE EXTRACTION (TCLP) SW846-1311	P108.1.0	Control of the State of the St	.3.0
Parameter	Result	Det. Limit	Units
BENZENE .	BDL	50	ug/L
ARBON TETRACHLORIDE	BDL		ug/L
CHLOROBENZENE	BDL	50	ug/L
CHLOROFORM	BDL		ug/L
1,2-DICHLOROETHANE	BDL	50 50	ug/L
1,1-DICHLOROETHYLENE	BDL BDL	100	ug/L ug/L
METHYL ETHYL KETONE	BDL BDL	50	
TETRACHLOROETHYLENE	BDL	50	
TRICHLOROETHYLENE	BDL BDL		ug/L
VINYL CHLORIDE	BUE	100	49/ L
SURROGATE RECOVERY			
DICHLOROETHANE-D4	105		% Rec
TOLUENE-D8	99		% Rec
BROMOFLUOROBENZENE	95		% Rec
a the n caucotti in Analysis Date:	08-JUL-96 Instrument: PKEP	Test: P233.1.	Ö
Analyst: R. CAMPBELL, JR. Analysis Date: C Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PE	08-JUL-96 Instrument: PREP ST+HERBS) SW846-1311 P107.2.0 Result	Test: P233.1. Det. Limit	Units
Analyst: R. CAMPBELL, JR. Analysis Date: (Prep: TOX CHAR LEACHING PROCEDURE (TCLP M/ORG+PE Parameter	ST+HERBS) SW846-1311 P107.2.0		Units mL
Analysis R. CAMPBELL, JR. Analysis Date: (Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PE PArameter INITIAL WEIGHT OR VOLUME	08-JUL-96 Instrument: PREP ST+HERBS) SW846-1311 P107.2.0 Result		Units
ADALYSTS R. CAMPELL, JR. ADALYSIS DATE: (Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PE INITIAL WEIGHT OR VOLUME FINAL VOLUME ORGANOCHLORINE PESTICIDES BY GC:ECD ADALYSTS S. BUSSEY ADALYSTS ORDER TO STREET THE STREET STREET STREET ADALYSTS S. BUSSEY ADALYSTS THINE! LIQUID EXTRACT	08-JUL-96 Instrument PRP ST+HERBS) SW846-1311 P107.2-0 Result 200 1 (7 PESTICIDES) SW846-8080A 16-JUL-96 Instrument BC/ECD 10N SW846-35108 P233.1-0	Det. Limit Test: D164.3.	Units mL mL
Analysts R. CAMPBELL, JR. Analysis Date: In Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PE INITIAL WEIGHT OR VOLUME FINAL VOLUME ORGANOCHLORINE PESTICIDES BY GC:ECD Analysts S. BUSSEY Analysis Date: Prep: GC SEPARATORY FUNNEL LIQUID-LIQUID EXTRACT Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PE Parameter)	08-JUL-96 Instrument: PREP ST+HERBS) SW846-1311 P107.2.0 Result 200 1 (7 PESTICIDES) SW846-8080A Instrument: GC/ECD ION SW846-3510B P233.1.0 ST+HERBS) SW846-1311 P107.2.0 Result	Det. Limit Test: 0164.3.	Units mL mL
ADMINST: R. CAMPBELL, JR. ADMINST: Date: IN Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PE INITIAL WEIGHT OR VOLUME FINAL VOLUME FINAL VOLUME ORGANOCHLORINE PESTICIDES BY GC:ECD ADMINST: S. BUSSEY ADMINST: S. BUSSEY ADMINST: Date: Prep: GG SEPARATORY FUNNEL LIQUID-LIQUID EXTRACT Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PE	08-JUL-96 Instrument: PREP STHERBS) SW846-1311 P107.2.0 Result 200 1 (7 PESTICIDES) SW846-8080A 16-JUL-96 Instrument: GC/ECD 10N SW846-35108 P233.1.0 STHERBS) SW846-1311 P107.2.0 Result BDL	Det. Limit Test: 0164.3. Det. Limit 0.00025	Units mL O Units mg/L
Analysts R. CAMPBELL, JR. Analysts Dates of Preps Tox CHAR LEACHING PROCEDURE (TCLP W/ORG+PE INITIAL WEIGHT OR VOLUME FINAL VOLUME ORGANOCHLORINE PESTICIDES BY GC:ECD Analysts S. BUSSEY Analysts Dates Preps GC SEPARATORY FUNNEL LIQUID-LIQUID EXTRACT Preps Tox CHAR LEACHING PROCEDURE (TCLP W/ORG+PE GAMMA-BHC (LINDANE) HEPTACHLOR	08-JUL-96 Instrument PREP ST+HERBS) SW846-1311 P107.2.0 Result 200 1 (7 PESTICIDES) SW846-8080A 16-JUL-96 Instrument GC/ECD 100 SW846-35108 P233.1.0 RESULT BDL BDL BDL	Det. Limit Test: 0164.3. Det. Limit 0.00025 0.00025	Units mL O Units mg/L mg/L
ADALYSTS R. CAMPBELL, JR. ADALYSTS DATE: OF PROPERTY OF THE PR	08-JUL-96 Instrument PREP PREP PREP PREP PREP PREP PREP PRE	Det. Limit Det. Limit	Units mL Units my Units mg/L mg/L mg/L
ADBLYST: R. CAMPBELL, JR. ADBLYSTS DATE: IT PROPRIED TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PE PARAMETER INITIAL WEIGHT OR VOLUME FINAL VOLUME ORGANOCHLORINE PESTICIDES BY GC:ECD ADBLYST: S. BUSSEY ADBLYSTS DATE: Prop: GC SEPARATORY FUNNEL LIQUID-LIQUID EXTRACT Prop: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG-PE GAMMA-BHC (LINDANE) HEPTACHLOR HEPTACHLOR EPOXIDE ENDRIN	08-JUL-96 Instrument: PREP ST+HERBS) SW846-1311 P107.2.0 Result 200 I	Det. Limit Det. Limit 0.00025 0.00025 0.00025 0.00050	Units mL units mg/L mg/L mg/L mg/L
Prepr TOX CHAR LEACHING PROCEDURE (TCLP W/ONGSPE Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME ORGANOCHLORINE PESTICIDES BY GC:ECD Analysts S. BUSSEY Analysis Date: Prep: GC SEPARATORY FUNNEL LIQUID-LIQUID EXTRACT Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PE PArameter GAMMA-BHC (LINDANE) HEPTACHLOR HEPTACHLOR HEPTACHLOR EPOXIDE	08-JUL-96 Instrument PREP PREP PREP PREP PREP PREP PREP PRE	Det. Limit Det. Limit	Units mL units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

BDL

200

10

Instrument: PREP

Result

0.0050 mg/L

Test: P201.4.0

Det. Limit

INDI

Units

mL

mL

HERITAGE ENVIRONMENTAL SERVICES, INC.

Sample ID: C179131 310-A-038-FLI

	L-96 Instrument: GC/ECD	Test: 0253.2.	0 1101
Prep: DIAZOMETHANE HERBICIDE DERIVATIZATION SW846-815			
Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PESI+HE	RBS) SW846-1511 P107.2.0	Account to the said of the said	
Prep: TOX CHAR LEACHING PROCEDURE (TCLP W/ORG+PEST+HE Parameter	Result	Det. Limit	Units
		Det. Limit 0.010	Units mg/L

Sample Comments

Greater Than Upper Detection Limit Below Detection Limit Not Applicable

BDL NA

Sample chain of custody number 00164.

This Certificate shall not be reproduced, except in full, without the written approval of the lab.

Approved:

Page 6 (last page)

VAX/VMS Nuclide Identification Report V2.2 Generated 16-AUG-1996 15:56:21

310 Smear 8/6/96

Configuration : \$DISK1:[USER]JUNK.CNF:5

Analyses by : PEAK VIS.8, PEAKEFF V2.1, ENBACK VI.2, NID V2.1 Smear of Touk \$5

0.0%

Sample date : 1-MAR-1996 12:00:00 Acquisition date : 16-AUG-1996 14:45:40

Sample ID : Sample quantity : 1.0000 L
Detector name : 74 cc Detector geometry:

Elapsed live time: 0 01:00:00.00 Elapsed real time: 0 01:00:00.00

Energy tolerance: 1.40 keV Half life ratio: 8.00
Errors propagated: No Systematic Error: 0.00 %
Efficiency type: Spline Efficiencies at: Peak Energy

Efficiency type : Spline Abundance limit : 50.00

Post-NID Peak Search Report

Energy Area Bkgnd FWHM Channel Left Pw ZErr Fit Nuclides 32.04 282 1057 1.84 32.68 30 7 21.0 56.74 450 1172 2.63 57.39 55 11 10.7 4.41E+00 6868 726 1.80 60.21 55 11 1.4 AM-241 59.57 92.66k 26 246 1.10 93.32 90 7101.7 511.05* 39 141 8.96 512.15 507 13 72.8 609.36± 26 42 2.98 610.62 607 9 54.8 2.10 663.05 659 10 1.9 661.70 2969 47 CS-137 0 1293.00 1 1.38 1295.96 1293 6 47.9

$$C_s = \frac{2969}{60 \times 0.851 \times 0.0218} = 2667 \pm 51$$

UAX/VMS Nuclide Identification Report V2.2 Generated 16-AUG-1996 14:44:12 310 smear 8/14/96

NORTH WALL, white strack Configuration : \$DISK1:[USER]JUNK.CNF;4

Complementary : PEAK VI5.8, PEAKEFF V2.1, ENBACK VI.2, NIB V2.1.

Sample date : 1-MAR-1996 12:00:00 Acquisition date : 16-AUG-1996 13:38:12

Detector name : 74 cc Detector geometry:

Elapsed real time: 0 01:00:00.00 0.0% Elapsed live time: 0 01:00:00.00 Half life ratio : 8.00 Systematic Error : 0.00 % Energy tolerance: 1.40 keV

Errors propagated: No Efficiency type : Spline
Abundance limit : 50.00 Efficiencies at : Peak Energy

Post-NID Peak Search Report

īt	Energy	Area	Bkgnd	EWHM	Channel	Left	Pw ZErr	Fit	Nuclides
0	59.46	614	245	1.84	60.10	54	12 6.5		AM-241
0	92.74*	12	101	1.71	93.40	89	9171.3		
0	185.72★	28	59	3.52	186.45	182	9 60.2		U-235
0	510.79*	6	36	2.56	511.89	505	12233.9		
0	661.59	327	9	2.36	662.94	657	12 6.0		CS-137
0	776.78	12	2	2.43	778.36	776	7 43.2		
0	846.44±	5	14	2.85	848.17	845	8160.8		
0	1460.52k	4	7	3.27	1464.07	1459	9127.9		K-40
	0 0 0 0 0 0 0	0 59.46 0 92.74k 0 185.72k 0 510.79k 0 661.59 0 776.78 0 846.44k	0 59.46 614 0 92.744 12 0 185.724 28 0 510.794 6 0 661.59 32 0 776.78 12 0 846.444 5	0 59.46 614 245 0 92.744 12 101 0 185.724 28 59 0 510.794 6 36 0 661.59 327 9 0 776.78 12 2 0 846.444 5 14	0 59.46 614 245 1.84 0 92.744 12 101 1.71 0 185.724 28 59 3.52 0 510.794 6 36 2.56 0 661.59 327 9 2.36 0 776.78 12 2 2.43 0 846.444 5 14 2.85	0 59.46 614 245 1.84 60.10 0 92.74A 12 101 1.71 93.40 0 185.72k 28 59 3.52 186.45 0 510.79k 6 36 2.56 511.89 0 661.59 327 9 2.36 662.94 0 776.78 12 2 2.43 778.36 0 846.44k 5 14 2.85 848.17	0 59.46 614 245 1.84 60.10 54 60 92.744 12 101 1.71 93.40 89 0 185.724 28 59 3.52 186.45 182 0 510.794 6 36 2.56 511.89 505 0 661.59 327 9 2.36 662.94 657 0 776.78 12 2.43 778.36 778.36 778 0 846.444 5 14 2.85 848.17 845	0 59.46 614 245 1.84 60.10 54 12 6.5 0 92.744 12 101 1.71 93.40 89 9171.3 0 185.724 28 59 3.52 186.45 182 9 60.2 0 510.794 6 36 2.56 511.89 505 12233.9 0 661.59 327 9 2.36 662.94 657 12 6.0 0 776.78 12 2 2.43 778.36 776 7 43.2 0 846.444 5 14 2.85 848.17 845 8160.8	0 59.46 614 245 1.84 60.10 54 12 6.5 0 92.74k 12 101 1.71 93.40 89 9171.3 0 185.72k 28 59 3.52 186.45 182 9 60.2 0 510.79k 6 36 2.56 511.89 505 12233.9 0 661.59 327 9 2.36 662.94 657 12 6.0 0 776.78 12 2 2.43 778.36 776 7 43.2 0 846.44k 5 14 2.85 848.17 845 8160.8

$$Am = \frac{614}{60 \times 0.359 \times 0.0836} = 341 \pm 22$$

$$Cs = \frac{327}{60 \times 0.851 \times 0.0218} = 294 \pm 18$$

```
2"x2" aff
Max AmS Pask Search Report VI.5 Generated 17-3UL-1996 12:35:20
                                                502
                                          Smear
                                                           310 Rm 050
Jonfracescian : $0 ISX1:05ER2JUNK.CDE:11
             : PEAK 715.8
analysas ty
                                                             West
                                                                         Mall
             : Unins at the
Sand a title
                                                                       electrical
             : 6-MAR-1996 12:00:00 Acquisition date : 17-JUL-1996 10:42:27
size sicuent
             : 87-0000-0000
                                  Sample quantity : 0.40000 L
Sample 10
             : Routine
                                  Sample geometry : 400ml/400 low po
damale type
                                                                              1500 dpm &
Detention hawa : BICASSAY-SE
                                  Datector geometry: J-UP
                                                                     2 5000 dpm B
Blapsad live time: 0 01:00:00.00
                                  Elapsed real time: 0 01:00:04.00 0.1%
                                  End energy : 2066.44 keV
                 43.00 keV
Start energy
                3.50
                                  Gaussian .
                                                     10.00
Beneritivity
                      Bkand FWHM Channel Left Pw Cts/Sec XErr
                                                                Fit
                Area
Fk It Energy
                                  99,48
                                          89
                                               7 3.44E-02 31.9
 1 0
                 124
                        499 0.87
       59.35
                        528 1.66 205.66
                                        202
                                              8 2.43E-02 48.7
                 38
 2 0
       116.35
                        139 0.62 1184.19 1182
                                               8 4.07E-03144.7
       609.06
                  15
                        67 1.42 1210.29 1208
                                              6 7.77E-03 55.0
                  28
 4 0 622.20
                        293 1.51 1288.44 1281
                                              15 9.01E+00 0.6
 5 0 661.54
               32426
                       5 1.43 1378.11 1376
                                              7 2.31E-03 57.9
 5 0 706.68
                  8
                          6 1.60 2304.12 2295 15 9.32E-03 27.0
                  34
 7 0 1172.81
                          3 1.37 2620.78 2615
                                             11 6.30E-03 22.5
                  23
 8 0 1332,18
                         4 0.74 3151.19 3143 10 1.02E-03 77.1
 9 0 1599.11
        90-94
                        483
                        346
         95-99
                        137
                    137
                                              171 ± 36 dpm
              60×0.36×0.037
```

ARGONNE NATIONAL LABORATORY

Intra-Laboratory Memo

July 29, 1996

To:

Charlotte Sholeen

ESH

From:

Don Nelson

27

ESH

Subject:

Building 310 Samples

On 07/25/96 Tim Branch delivered 2 samples to the radiochemistry laboratory and requested gamma spectral analyses.

The first sample was a smear (on a piece of paper towel) and was believed to contain \sim 2100 dpm of beta activity (based on survey data). An overnight count on our spectrometer found only 25 dpm of Cs-137 with no other significant gamma activity. The remainder of the beta act must therefore be from isotope(s) with no gamma emissions (e.g. Sr-90 or Tc-99). 536

The second sample was identified as a cap from a pump and was labeled as having beta/gamma activity of 25,000 dpm/100 cm². This sample was counted for 1 hour in each of two orientations and displayed the gamma spectra of Th-232 daughters. Based on the ratios of the gamma peaks, I believe this activity is supported by Th-232 itself and not by Ra-228 or Th-228. Because of the irregular geometry of the sample, a precise measure of the quantity of Th-232 present is not possible. My best estimate would be 60,000 to 100,000 dpm. This would correspond to 0.3 to 0.5 g of thorium in the sample (which weighted $\sim 1~{\rm Kg})$. This amount would be unlikely to be external contamination and leads to the conclusion that thorium was probably a trace component of the material from which the cap was fabricated.

DMN:se

cc: R. A. Schlenker File DA Log

ILLINOIS DEPARTMENT OF NUCLEAR SAFETY

Regulations

32 Illinois Administrative Code: Chapter II

August 1995

Illinois Department of Nuclear Safety
1035 Outer Park Drive
Springfield, Illinois 62704

. \$330.10

TITLE 32: ENERGY CHAPTER II: DEPARTMENT OF NUCLEAR SAFETY SUBCHAPTER b: RADIATION PROTECTION

PART 330 LICENSING OF RADIOACTIVE MATERIAL

SUBPART A: GENERAL PROVISIONS

License Exemption - Source Material

Purpose and Scope

Incorporations by Reference

330.360 Persons Possessing a License for Source,

Byproduct, or Special Nuclear Material in Quantities Not Sufficient to Form a Critical

Naturally-Occurring Radioactive Material on

Mass on Effective Date of This Part

Effective Date of This Part (Repealed)

330.370 Persons Possessing Accelerator-Produced or

Amend

330.400

330.500

330.40	License Exemption - Radioactive Materials Other Than Source Material
	SUBPART B: TYPES OF LICENSES
Section	
330,200	Types of Licenses
330.210	General Licenses - Source Material
330.220	General Licenses - Radioactive Material Other Than Source Material
	SUBPART C: SPECIFIC LICENSES
Section	
330,240	Filing Application for Specific Licenses
330.250	
330.260	Special Requirements for Issuance of Certain Specific Licenses for Radioactive Materials
330.270	Special Requirements for Specific Licenses of Broad Scope
330.280	Special Requirements for a Specific License to Manufacture, Assemble, Repair, or Distribute Commodities, Products, or Devices that Contain Radioactive Material
330.300	Issuance of Specific Licenses
330.310	Specific Terms and Conditions of License
330.320	Expiration and Termination of Licenses
330,330	Renewal of Licenses
330,340	Amendment of Licenses at Request of Licensee
330.350	Department Action on Application to Renew or

Section

330.10

330.15

330.30

SUBPART D: TRANSPORTATION (Repealed)

Modification and Revocation of Licenses

Section 330.1000 Transportation of Radioactive Materials

Transfer of Material

330.900 Reciprocal Recognition of Licenses

(Repealed)

340.Appendix B	Exempt Concentrations Exempt Quantities
340 Appendix C	Groups of Medical Uses of Radioactive
	Materials (Repealed)
340.Table A Gre	oup I (Repealed)

340. Table B Group II (Repealed) 340. Table C Group III (Repealed) 340. Table D Group IV (Repealed) 340. Table E Group V (Repealed) 340. Table F Group VI (Repealed) 340 Appendix D Limits for Broad Licenses (Section 330.270)

340.Appendix E Schedule E (Repealed) 340.Appendix F Schedule F (Repealed)

340 Appendix G Financial Surety Arrangements (Section 330.250(c)(1)(D))
340.Appendix H Wording of Financial Surety

Arrangements (Section 330.250(c)(1)(E))

AUTHORITY: Implementing and authorized by the Radiation Protection Act of 1990 (Ill. Rev. Stat. 1991, ch. 111%, par. 210-1 et seq.) [420 ILCS 40].

SOURCE: Filed April 20, 1974, by the Department of Public Health; transferred to the Department of Nuclear Safety by P.A. 81-1516, effective December 3, 1980; amended at 5 Ill. Reg. 9586, effective September 10, 1981; codified at 7 Ill. Reg. 17492; recodified at 10 Ill. Reg. 11268; amended at 10 Ill. Reg. 17315, effective September 25, 1986; amended at 15 Ill. Reg. 10632, effective July 15, 1991; amended at 18 Ill. Reg. 5553, effective March 29, 1994.

SUBPART A: GENERAL PROVISIONS

Section 330.10 Purpose and Scope

- a) This Part provides for the licensing of radioactive material. No person shall receive, possess, utilize, manufacture, distribute, transfer, own or acquire radioactive material or devices or equipment utilizing or producing such materials except as authorized in a specific or general license issued pursuant to this Part or as otherwise provided in this Part.
- b) In addition to the requirements of subsection (a) above, all licensees are subject to the requirements of this Part and 32 Ill. Adm. Code 310, 320, 331, 340, 341 and 400. Licensees engaged in source material milling or possessing byproduct material as defined in Section 4(a)(2) of the Radiation Protection Act of 1990 (Ill. Rev. Stat. 1991, ch. 1114, par. 210-1 et seq.) [420 ILCS 40/4(a)(2)], are also subject to the requirements of 32 Ill. Adm. Code 332. Licensees engaged in industrial radiographic operations are also subject to the requirements of 32 Ill. Adm. Code 350. Licensees using radioactive material in the healing arts are also subject to the requirements of 32 Ill.

\$\$330.10 - 30

Adm. Code 335. Licensees engaged in wireline and subsurface tracer studies are also subject to the requirements of 32 Ill. Adm. Code 351. The requirements of this Part do not apply to carriers. Carriers are subject to the requirements of 32 Ill. Adm. Code 341.

(Source: Amended at 18 Ill. Reg. 5553, effective March 29, 1994)

Section 330.15 Incorporations by Reference

All rules, standards and guidelines of agencies of the United States or nationally recognized organizations or associations that are incorporated by reference in this Part are incorporated as of the date specified in the reference and do not include any later amendments or editions. Copies of these rules, standards and guidelines that have been incorporated by reference are available for public inspection at the Department of Nuclear Safety, 1035 Outer Park Drive, Springfield, Illinois.

(Source: Added at 18 Ill. Reg. 5553, effective March 29, 1994)

Section 330.30 License Exemption - Source Material

- a) Any person is exempt from this Part to the extent that such person receives, possesses, uses, owns or transfers source material in any chemical mixture, compound, solution or alloy in which the source material is by weight less than one-tweatieth of one percent (0.05 percent) of the mixture, compound, solution or alloy.
- b) Any person is exempt from this Part to the extent that such person receives, possesses, uses or transfers unrefined and unprocessed ore containing source material; provided that, except as authorized in a specific license, such person shall not refine or process such ore.
- Any person is exempt from this Part to the extent that such person receives, possesses, uses or transfers:
 - 1) Any quantities of thorium contained in:
 - A) Incandescent gas mantles;
 - B) Vacuum tubes;
 - C) Welding rods;
 - D) Electric lamps for illuminating purposes provided that each lamp does not contain more than 50 milligrams of thorium;
 - E) Germicidal lamps, sunlamps and lamps for outdoor or industrial lighting provided that each lamp does not contain more than 2 grams of thorium;

- Rare earth metals and compounds, mixtures and products containing not more than 0.25 percent by weight thorium, uranium or any combination of these; or
- G) Personnel neutron dosimeters, provided that each dosimeter does not contain more than 50 milligrams of thorium.
- Source material contained in the following products:
 - A) Glazed ceramic tableware, provided that the glaze contains not more than 20 percent by weight source material;
 - B) Piezoelectric ceramic containing not more than two percent by weight source material;
 - C) Glassware containing not more than ten percent by weight source material, but not including commercially manufactured glass brick, pane glass, ceramic tile or other glass or ceramic used in construction; and
 - D) Glass enamel or glass enamel frit containing not more than ten percent by weight source material imported or ordered for importation into the United States, or initially distributed by manufacturers in the United States, before July 25, 1983.
- Photographic film, negatives and prints containing uranium or thorium.
- 4) Any finished product or part fabricated of, or containing, tungsten-thorium or magnesiumthorium alloys, provided that the thorium content of the alloy does not exceed four percent by weight and that this exemption shall not be deemed to authorize the chemical, physical, or metallurgical treatment or processing of any such product or part.
- Uranium contained in counterweights installed in aircraft, rockets, projectiles and missiles, or stored or handled in connection with installation or removal of such counterweights, provided that:
 - A) The counterweights are manufactured in accordance with a specific license issued by the U.S. Nuclear Regulatory Commission or the Atomic Energy Commission authorizing distribution by the licensee pursuant to 10 CFR 40.13(c)(5)(i), as in effect on June 30, 1969, exclusive of subsequent amendments or editions;
 - B) Each counterweight has been impressed with the following legend clearly legible through

COUNTER DATA SHEET

Sample	0-3104	from W.S. T. Lines	310-306	Volume _	50	
	e 8-15-96	6401 PFS-11 □ PO- 97	Counted By		_ Date Counted	8-15-96

ALPHA	BETA COUNTIN	SPIKED SAMPLE PERCENT RECOVERY DETERMINATION					
☐ SPIKED	, Zuns	SPIKED	SPIKED SAMPLE	PERCENT	HECOVER	DETERMIN	ATION
Counter Numbers	17	18	Counter Numbers		v selfenore		
Total a Counts	257	267		ALPHA	BETA	ALPHA	BET
Counting Time	10	10	Standard Solution d/m/ml + 50 = Known	29.9	983 =	29.9 50 =	983
Total α c/m	25.7	24.7	d/m/ml	.598	19.66	.598	19.6
Background	0.05	0.05					
Net a c/m	25,7	26.7	Spiked Sample α & β				
ml Sample	10	10	Results in d/m/ml				
α c/m/ml	2.57	2.67					1.04
α Yield Factor	1.96	1.96	Unspiked sample α &	ma 2 - 63		* Later	1 203
α d/m/ml	5.04	5.23	β Results (from PFS-11)				
Total β Counts	10814	10167	Spiked d/m/ml minus Unspiked d/m/ml =				
Counting Time	\$10	10	Recovered d/m/ml				
Total β c/m	1081.4	1016.7					4. 10
β Background	44.4	44.0	Recovered d/m/ml + Known d/m/ml x 100 =				
BKGD + Net α c/m	70.1	70.7	Percent Recovery				
Net β c/m	1011.3	9460			- Company		
ml Sample	10	10		REMA	RKS		1000
β c/m/ml	101.13	94.60					
β Yield Factor	1.35	1.35					17.00
β d/m/ml	136.5	127.7				10000	
REMARKS							
0	X-5,1	40/m/ml					
(X-5,1 3-13;	2.10/m	lm,				
	Tara St.						
And the second second							- 1/1

	REQUES	T FOR AN		960815	
Date: 8-/	5-96Bldg: 31	OCL. S	Sample:	64	01
Type of Sam	ple: WATER	from U	1.5.T.	LINES	310-3
	Requ				
ANALYSES	DESIRED: Χα, δilds, Volume fo	×β, ×ρΗ,	Hg,	Ammonia	a Nitrogen
Total Sol	lids, Volume for	or 20% Botton	ns		
Other:					
	ed: 8-15	Analys	st: S	12	
Results:	B-137	1 D/m/	n _ n _		
Size	Determination	Reading	Resu	ılt	
	Carlotte Control				
		Total So	olids	Total S	Solids
Dish Numb	er ·				
Wt. Dish +	Wet Sample				
Wt. Dish					
Wt. Sample			3 747		
Wt. Dish +	Dry Sample				
Wt. Dish					
Wt. Dry Sa	mple				
Remarks a	nd Calculations:	ENTERN STATE			
ESH-228 (6-93)					

REPORT OF ANALYTICAL RESULTS

Sample Material:

Water, Bldg. 310 Waste Storage Tanks

Date Received: 8/20/96

Submitted by:

C. Grandy

Date Reported:

9/4/96

Submitter's Sample No.	ACL Sample No.	Gamma Spec.; (pCi/mL)				
		137Cs	<u>∞Co</u>	241Am		
B310-001	96-8206-01	$(1.27 \pm 0.13) \times 10^2$	5.2 ± 0.5	7.2 ± 0.7		
			-10			
TE: Unused sa	ample material will	be returned to the Customer. Finer arrangements are made. V	repared samples will be disc	carded one (1) month		

CMT Logbook No. 938, Det. 2, 3, and 6, Pg. 127; CMT Logbook No. 1111, Pg. 119.

T. TenKate

Reference(s):

Analyst(s): T. TenKate

Addnl. Copies: ACL Results File ACL 200 File

at 2-

4291

REPORT OF ANALYTICAL RESULTS

bmitted by:	C. Grandz				Da	te Reported:	8/23/96
Submitter's Sample No.	ACL Sample No.				Hg, µg/L		
B310-001	96-8206-01				32.6		
-	-01 Duplicate	1000			32.5		
60.F- 00	-01 Spike	20.7			42.3		
		30,0	(Sp	ike Added:	10 μg/L; Re	covery: 97%)	
	Prep Blank	978			<0.02		
		Laboratory Cont	rol Sample	(LCS)			
	1000000	ICV-5 (0689): 1.	24 μg/L Re	covery: 99%	6		
		Estimated accur	racy is ±5%.				
							according to U.S. SOP: ACL-209.
					•		
	10 20 20 10	State State Spile					
TE: Unused sa	Imple material wi	be returned to the	ne Customer	. Prepared	samples wil	I be discarded o	one (1) month
er the date of th	is report unless o	other arrangemen number(s) above.	ts are made	. When ma	king future i	nquiries regardii	ng this report,
Kiely ference(s):	CMT Notebook N	o 1262 p 130				a	at 2- 7399
ioronoc(s).	OIII. HOLODOOK IV	o. 1202, p. 100.			100000		
C. 8	Sholeen	D. Graczyk P. Lindahl J. Kiely		Analyst(s): J. Kie	y JK	2001 2
		ACL Results File					

ACL 200 File

8/26/96 CMT-84 (4-94)

D. Green

REPORT OF ANALYTICAL RESULTS

ubmitted by:	C. Grandy	ater			Da	ate Reported	9/24/96	
Submitter's		As	Ва	Cd	μg/mL Cr	Pb	Se	A
B310-001	96-8206-01	<0.50	0.33	6.77	2.90	15.1	<0.50	0.0
B310-001	96-8206-01S	Spike:			QA Data			
	Added	5.00	10.00	1.00	1.00	5.00	1.00	1.0
	Found	5.30	9.94	6.86	3.28	17.4	1.08	0.1
	% Recovery	106.0	96.4	76.0	67.0	76.0	108.0	5.0
fter the date	d sample material with of this report unless ince the ACL sample in A. Essling Noteb	other arranger number(s) abo	nents are ma	de. When m	aking future in	nquiries rega	rding this repo	call
fter the date ease referent . Graczyk eference(s):	of this report unless once the ACL sample of A. Essling Noteb	other arranger number(s) abo	nents are ma	de. When m	naking future in about the re	nquiries rega esults reporte	rding this repo	call

9/24/96 CMT-84 (9-98) F. Martino

ACL 200 File

REPORT OF ANALYTICAL RESULTS

Submitter's				
Sample No.	ACL Sample No.		Alpha Scan	
B310-001	96-8206-01		(See Attachment)	
	18.8			
TF: Uniused ca	mnle material will	he returned to the Client Property	d samples will be discarded one (1) month	
r the date of thi	is report unless of	her arrangements are made. Whe	n making future inquiries regarding this repo ation about the results reported here, please	
mith	CMT Notebook No		at 2- <u>189</u>	
T-: C C	roady 5	. Pausa	1.00	100
C. S	iholeen F	D. Bowers Ana D. Martino D. Smith	alyst(s): L. Smith	

CMT-84 (9-96)

Report of Analytical Results for ACL Sample No. 96-8206-01

The analytical sample listed below consisted of a water sample from ANL-E Bldg. 310 Waste Storage Tanks. Due to the large quantity of solids present in the solution, direct electrodeposition of the sample was not possible. Therefore, the actinides and lanthanides were separated as a group from the other matrix constituents. A TruSpecTM extraction chromatographic column was utilized for this purpose. The sample was then electrodeposited prior to alpha spectrometry.

The resulting alpha spectrum is attached. Since tracers were not added to the samples, standard alpha sources were counted in the appropriate detectors to define the proper energy calibration for each detector.

ACL ID#	Peak Energy (MeV)	Isotope ¹	% Activity ²
96-8206-01	4.16	U	30
	4.39	^{235/236} U	1
	4.73	^{233/234} U	35
		²³⁷ Np ^{239/240} Pu	
	5.13	^{239/240} Pu	24
	5.47	²⁴¹ Am	6
		²³⁸ P ₁₁	
	5.80	^{243/244} Cm	3
		²³⁶ Pu	

¹ Because no elemental separations were performed, alpha emitters of equivalent energies may be present in the spectra, and, therefore, more than one alpha emitter may be listed for each peak. Process knowledge of the data user may be used to eliminate some of the listed nuclides.

² This value is based upon the ratio of the counts under the individual peak to the total counts of all the peaks. This value also assumes equivalent electrodeposition efficiencies for all analytes, which is only true to a gross approximation for different elements.

96-8206-01 alpha scan recount

APPENDIX E: Procedures & Confined Space Entry Permit for Tunnel

Attachment 2 Chapter 7-4

Confined Space Entry Permit

Page / of 2

This permit must be reissued each workshift or when conditions change.

Date: 7/17/96 Confined Space Number: Location: 310 Di	vision: ESU/HD
Nature of Work: Inspection () Repair () Cleaning () Other ()	
Description of Work: Reduced assertment of Tree (Approved procedure must be attached)	. 0
(Approved procedure must be attached)	nne
	1
date) : a/p
Hazards of Confined Space: O2 defficiency	
Answer all questions.	Yes No N/A
1. Were hazards, testing and emergency procedures explained to all members of the crew?	~
2. Are all lines isolated and/or disconnected?	/
3. Are all valves locked and tagged?	
4. Are all motors and electrical switches in the confined space locked and tagged? 5. Have engulfment hazards been controlled? ΕΕΡ-1 Βρεσιέσε Σ΄, Βοο?	Z TW
6. Has the confined space been decontaminated and purged?	<u> </u>
7. Is oxygen at least 19.5% and less than 23.5% by volume?	
8. Are combustible gases/vapors less than 10% LEL?	4
9. Are toxic gas concentrations acceptable?	
Is forced supply/exhaust ventilation operating? Has adequate illumination been provided?	
12. Has a standby person been designated and trained to (a) observe the person working	-
in the confined space and (b) take emergency action if necessary?	1
13. Is all safety equipment in place?	ブ ー
14. Are retrieval lines and safety harnesses used, if necessary?	7,
15. Is the confined space safe for entry without special clothing?	<u>了</u>
16. Have the workers involved in this job been given instructions regarding the safe	7
and efficient method of doing the work?	<u>~</u> _
17. Is continuous monitoring necessary?	
Explain any "No" answers here. See attached procedure	
Filtrand and and released for	
How will attendants call fire department in case of emergency? Radio	
How will entrants and attendant communicate? Verbal	
List any special precautions necessary: Refer to attached procedure as necessary	
, Refer, to attached procedure as necessary	
List safety equipment used: See Procedure	
Approved confined annual annual annual be attached	
Approved confined space entry procedure must be attached.	
Thousand	
I have personally examined the above and attest that entry permit requirements	
have been met and the above noted precautions are being taken.	
M1/1/06- 1/1/01	
Signature of entrant date Signature of entrant date Signature of entrant	date
Signature of entrant date Signature of entrant date Signature of entrant	date
Time Branch 8/6/96 Balaces O Gozaleto	8/6/96
Signature of attendant date Signature of supervisor	date
**	

Keep one copy at worksite. Use the back of this form to record air monitoring data

ESH-215 (4-93)

Confined Space Entry

Confined Space Name/ID 5:0 Tonnel

		Measured Concentration*		ed Concentration*			
Date	Time	O2 (%)	COMB (% LEL)	TOX (PPM)	Surveyed by (Signature)	Instrument	Concentration OK?
8/6/96	1400	21.0	83 Y.	OURA	m. Bolles	6x-82	YES
				The state of			
					Lance Notice Consiste		
						4	
Ł							
							n eene diliki kal

*Allowable levels: O2 = 19.5-23.5% Combustible = <10% LEL Toxic = H2S <10 ppm CO <35 ppm

CONFINED SPACE ENTRY PERMIT PROCEDURE FOR BUILDING 310 RETENTION TANK ROOM TUNNEL TO BUILDING 306

Site General: Radiological assessment of tunnel: (Entry to tunnel --- survey direct with instruments and smear surveys of surfaces).

- *Supervisors and employees involved with entry will have received confined space training.
- *Tunnel will be monitored for 19.5 23.5% oxygen, <10% LEL, <10ppm H2S. If pit fails to meet parameters contact department supervision for additional instructions.
- *Continuous ventilation and monitoring as determined by ESH/IH.
- *Body harness with attached line for retrieval will be worn. Also, protective clothing and respirator may be worn if determined needed by ESH/HP.
- *Attendant (safety person will remain stationed at point of entry and in verbal communication with the pit occupant.
- *Attendant will be capable of communicating a 911 emergency to the ANL Fire Department by radio. Request communication check of ANL-FD, advise ANL-FD of location of tunnel being entered.
- *Attendant will not leave the pit entrance unless properly relieved or occupant has exited pit.
- *Attendant will order occupant to leave pit should any threatening problems develop.
- *Confined space permit, confined space procedure will be posted at the job site.

Reviewed and approved by:

ESH/HP Supervisor Nolous C Geraghty 7/17/96
ESH/IH Fafth of 1/22/96
ESH/SE Supervisor attached page

APPENDIX F: Instrument Calibration Records

MARK MICHES American Calibration Resords

•

TABLE F1 Background Data from Tennelec for 310 Retention Tanks

	Clock Real Tir	me		counts/min		
	Day	Time	Count Time (min)	alpha	beta	
MON	07/08/96	11:36:12	200	0.255 ± 0.036	27.26 ± 0.37	
THU	07/11/96	08:20:14	200	0.180 ± 0.030	27.14 ± 0.37	
FRI	07/12/96	08:20:14	200	0.260 ± 0.036	27.59 ± 0.37	
MON	07/15/96	09:12:10	200	0.255 ± 0.036	27.07 ± 0.37	
TUE	07/16/96	17:22:42	200	0.265 ± 0.036	27.18 ± 0.37	
MON	07/22/96	12:21:07	200	0.170 ± 0.029	26.67 ± 0.37	
TUE	07/23/96	11:38:08	200	0.245 ± 0.035	26.93 ± 0.37	
THU	07/25/96	08:20:15	200	0.210 ± 0.032	27.38 ± 0.37	
FRI	07/26/96	09:52:20	200	0.260 ± 0.036	26.82 ± 0.37	
SAT	07/27/96	08:20:14	200	0.170 ± 0.029	27.13 ± 0.37	
SUN	07/28/96	08:20:27	200	0.220 ± 0.033	26.55 ± 0.36	
MON	07/29/96	08:20:27	200	0.175 ± 0.030	27.69 ± 0.37	
TUE	08/06/96	15:00:46	200	0.235 ± 0.034	27.54 ± 0.37	
WED	08/07/96	08:20:14	200	0.260 ± 0.036	27.82 ± 0.37	
THU	08/08/96	12:41:31	200	0.290 ± 0.038	27.23 ± 0.37	
FRI	08/09/96	11:11:48	200	0.195 ± 0.031	26.72 ± 0.37	
SAT	08/10/96	08:20:27	200	0.350 ± 0.042	27.22 ± 0.37	
SUN	08/11/96	08:20:27	200	0.215 ± 0.033	26.88 ± 0.37	
MON	08/12/96	08:20:27	200	0.160 ± 0.028	27.39 ± 0.37	
TUE	08/13/96	08:20:14	200	0.280 ± 0.037	26.79 ± 0.37	
WED	08/14/96	08:20:27	200	0.285 ± 0.038	27.66 ± 0.37	
THU	08/15/96	18:12:18	200	0.165 ± 0.029	27.14 ± 0.37	
FRI	08/16/96	08:20:14	200	0.235 ± 0.034	26.88 ± 0.37	
SAT	08/17/96	08:20:14	200	0.215 ± 0.033	27.43 ± 0.37	
SUN	08/18/96	08:20:27	200	0.220 ± 0.033	27.66 ± 0.37	
MON	09/16/96	18:51:37	200	0.150 ±0.027	25.71 ± 0.36	
WED	09/18/96	12:18:41	200	0.135 ± 0.026	24.93 ± 0.35	
	1		Minimum	0.135 ± 0.026	24.93 ± 0.35	
			Maximum	0.350 ± 0.042	27.82 ± 0.37	
			Average	0.224 ± 0.033	27.05 ± 0.37	
		Stand	lard Deviation	0.050 ± 0.004	0.60 ± 0.00	
			Count	27	27	

TABLE F2 Source Data from Tennelec for 310 Retention Tanks

	Real Time		coun	ts/min	effic	ciency	% cr	oss talk
	Day	Time	alpha	beta	alpha	beta	a to ß	ß to a
MON	07/08/96	11:38:23	13,514 ± 82	6,603 ± 57	0.243		32.8	
MON	07/08/96	11:40:33	8 ± 2	$39,665 \pm 141$		0.412		0.0202
THU	07/11/96	12:00:10	$13,558 \pm 82$	6,633 ± 58	0.244		32.9	
THU	07/11/96	12:02:19	3 ± 1	39,738 ± 141		0.413		0.0063
THU	07/11/96	12:12:31	$13,544 \pm 82$	6,636 ± 58	0.244		32.9	
THU	07/11/96	12:14:40	2 ± 1	39,701 ± 141		0.412		0.0050
MON	07/15/96	10:16:34	13,371 ± 82	6,917 ± 59	0.240		34.1	
MON	07/15/96	10:18:44	3 ± 1	$39,685 \pm 141$		0.412		0.0076
TUE	07/16/96	17:24:54	4 ± 1	$39,519 \pm 141$		0.410		0.0089
TUE	07/16/96	17:27:03	$13,603 \pm 82$	$6,590 \pm 57$	0.245		32.6	
MON	07/22/96	13:12:27	12,976 ± 81	$7,075 \pm 59$	0.233		35.3	
MON	07/22/96	13:14:36	1 ± 1	$39,431 \pm 140$		0.409		0.0025
MON	07/22/96	14:30:42	13,104 ± 81	$6,992 \pm 59$	0.236		34.8	
MON	07/22/96	14:32:52	2 ± 1	$39,559 \pm 141$		0.411		0.0051
TUE	07/23/96	11:40:20	13,010 ± 81	$7,118 \pm 60$	0.234		35.4	
TUE	07/23/96	11:42:29	3 ± 1	$39,431 \pm 140$		0.409		0.0063
THU	07/25/96	09:13:43	13,245 ± 81	$6,874 \pm 59$	0.238		34.2	
THU	07/25/96	09:15:53	3 ± 1	39,511 ± 141		0.410		0.0076
MON	07/29/96	09:52:56	$12,912 \pm 80$	$7,168 \pm 60$	0.232		35.7	
MON	07/29/96	09:55:06	1 ± 1	$39,786 \pm 141$		0.413		0.0025
TUE	08/06/96	15:02:58	$12,834 \pm 80$	$7,255 \pm 60$	0.231		36.1	
TUE	08/06/96	15:05:08	2 ± 1	$39,698 \pm 141$		0.412		0.0050
THU	08/08/96	12:43:42	13,212 ± 81	$6,827 \pm 58$	0.238		34.1	
THU	08/08/96	12:45:52	3 ± 1	$39,649 \pm 141$		0.412		0.0076
MON	08/12/96	16:03:03	$13,468 \pm 82$	$6,807 \pm 58$	0.242		33.6	
MON	08/12/96	16:05:13	5 ± 2	$39,722 \pm 141$		0.412		0.0126
WED	08/14/96	09:16:12	$13,144 \pm 81$	$6,956 \pm 59$	0.236		34.6	
WED	08/14/96	09:18:22	2 ± 1	$39,603 \pm 141$		0.411		0.0038
THU	08/15/96	18:14:30	3 ± 1	$39,653 \pm 141$		0.412		0.0063
THU	08/15/96	18:16:39	$13,645 \pm 83$	$6,652 \pm 58$	0.245		32.8	
FRI	08/16/96	08:33:56	$13,303 \pm 82$	$6,840 \pm 58$	0.239		34.0	
FRI	08/16/96	08:36:06	3 ± 1	$39,600 \pm 141$		0.411		0.0063
WED	09/18/96	12:20:52	$13,192 \pm 81$	$6,723 \pm 58$	0.237		33.8	
WED	09/18/96	12:23:01	1 ± 1	$39,624 \pm 141$		0.411		0.002
		Minimum	1 ± 1	6,590 ± 57	0.231	0.409	32.6	0.0025
		Maximum	$13,645 \pm 83$	$39,786 \pm 141$	0.245	0.413	36.1	0.0202
		Average	$6,638 \pm 41$	$23,242 \pm 100$	0.239	0.411	34.1	0.0071
	Standa	rd Deviation	$6,637 \pm 40$	$16,380 \pm 41$	0.005	0.004	1.1	0.0041
		Count	34	34	17	17	17	17

The alpha source is Am-241

The beta source is Sr-90/Y-90

FIGURE F1 Calibration Check Data for the Tennelec System

FIGURE F2 Background Check Data for the Tennelec System

05/21/96 0	9:59:57		PARAMETERS		Determination
		ALPHA	BETA	ALPHA	BETA
Bkgd Time	(min)	100.00	100.00	100.00	100.00
Bkgd Cnts		139	25514	170	26429
Bkgd Rate	(cpm)	0.00	0.00	1.70	264.29
Bkgd 2*Sig	(± cpm)	0.00	0.00	0.26	3.25
Std Cnt Time	(min)	10.00	10.00	10.00	10.00
Std Cts		144109	482099	152339	494075
Std Rate	(cpm)	14410.90	48209.90	15233.90	49407.50
Std Net Rate	(cpm)	0.00	0.00	15232.20	49143.21
Std Eff	(cts/dis)	0.00	0.00	0.27	0.50
		Hit "Q" Anyt	ime to Abort		
		• • • • • • • • • • • • • • • • • • • •			
DABRAS		• • • • • • • • • • • • • • • • • • • •			
DABRAS		• • • • • • • • • • • • • • • • • • • •			
DABRAS 05/21/96 1:	UTILITIES	: Determi		Parameters -	COUNTER 2
	UTILITIES	: Determi	ne Instrument	Parameters - Today's	COUNTER 2 Determinatio
	UTILITIES	: Determi	ne Instrument	Parameters -	COUNTER 2 Determinatio
	UTILITIES	: Determi	ne Instrument	Parameters - Today's	COUNTER 2 Determinatio
05/21/96 1:	UTILITIES	: Determi CURRENT ALPHA	ne Instrument PARAMETERS BETA	Parameters - Today's ALPHA	COUNTER 2 Determinatio BETA
05/21/96 1: Bkgd Time	UTILITIES 2:59:38 (min)	: Determi CURRENT ALPHA 100.00	ne Instrument PARAMETERS BETA 100.00	Parameters - Today's ALPHA	COUNTER 2 Determinatio BETA 100.00
05/21/96 1: Bkgd Time Bkgd Cnts	UTILITIES 2:59:38 (min) (cpm)	: Determi CURRENT ALPHA 100.00 134	PARAMETERS BETA 100.00 25514	Today's ALPHA 100.00 203	COUNTER 2 Determinatio BETA 100.00 26087 260.87
05/21/96 1: Bkgd Time Bkgd Cnts Bkgd Rate	UTILITIES 2:59:38 (min) (cpm)	CURRENT ALPHA 100.00 134 0.00	PARAMETERS BETA 100.00 25514 0.00	Today's ALPHA 100.00 203 2.03	COUNTER 2 Determinatio BETA 100.00 26087
05/21/96 1: Bkgd Time Bkgd Cnts Bkgd Rate	UTILITIES 2:59:38 (min) (cpm) (t cpm)	CURRENT ALPHA 100.00 134 0.00	PARAMETERS BETA 100.00 25514 0.00	Today's ALPHA 100.00 203 2.03	COUNTER 2 Determinatio BETA 100.00 26087 260.87 3.23
05/21/96 1: Bkgd Time Bkgd Cnts Bkgd Rate Bkgd 2*Sig	UTILITIES 2:59:38 (min) (cpm) (t cpm)	CURRENT ALPHA 100.00 134 0.00 0.00	PARAMETERS BETA 100.00 25514 0.00 0.00	Today's ALPHA 100.00 203 2.03 0.28	COUNTER 2 Determinatio BETA 100.00 26087 260.87
05/21/96 1: Bkgd Time Bkgd Cnts Bkgd Rate Bkgd 2*Sig Std Cnt Time	UTILITIES 2:59:38 (min) (cpm) (t cpm) (min)	CURRENT ALPHA 100.00 134 0.00 0.00 10.00	PARAMETERS BETA 100.00 25514 0.00 0.00 10.00	Today's ALPHA 100.00 203 2.03 0.28	COUNTER 2 Determinatio BETA 100.00 26087 260.87 3.23 10.00
05/21/96 1: Bkgd Time Bkgd Cnts Bkgd Rate Bkgd 2*Sig Std Cnt Time Std Cts	UTILITIES 2:59:38 (min) (cpm) (± cpm) (min) (cpm)	CURRENT ALPHA 100.00 134 0.00 0.00 10.00	PARAMETERS BETA 100.00 25514 0.00 0.00 10.00 500576	Today's ALPHA 100.00 203 2.03 0.28 10.00 176478	COUNTER 2 Determinatio BETA 100.00 26087 260.87 3.23 10.00 506531
05/21/96 1: Bkgd Time Bkgd Cnts Bkgd Rate Bkgd 2*Sig Std Cnt Time Std Cts Std Rate Std Net Rate	UTILITIES 2:59:38 (min) (cpm) (± cpm) (min) (cpm)	CURRENT ALPHA 100.00 134 0.00 0.00 10.00 173567 17356.70	PARAMETERS BETA 100.00 25514 0.00 0.00 10.00 500576 50057.60	Today's ALPHA 100.00 203 2.03 0.28 10.00 176478 17647.80	COUNTER 2 Determinatio BETA 100.00 26087 260.87 3.23 10.00 506531 50653.10

				3-3
DARRAS U		DAILY Op CHECK		
THE PART WAS LOVED				49592.50
. 07/11/96 08:18:14	CURRENT F	PARAMETERS		's Check
· Sept Con	ALPHA	BETA	ALPHA	BETA
THE REAL PROPERTY.				
. Bkgd Time (min)	100.00	100.00	10.00	10.00
. Bkgd Cnts	170	26429	28	2709
. Bkgd Rate (cpm)	1.70	264.29	2.80	270.90
 Bkgd 2*Sig (± cpm) 	0.26	3.25	1.06	10.41
- 100 BERG ATOM (1971)				
• Std Cnt Time (min)	10.00	10.00	1.00	1.00
• Std Cts	152339	494075	15536	48339
• Std Rate (cpm)	15233.90	49407.50		48339.00
Std Net Rate (cpm)	15232.20	49143.21	15533.20	48068.10
• Std Eff (cts/dis)	0.27	0.50	0.28	0.49
Hit	"Q" Anytime	to Abort •••	• • • • • • • • • • • • • • • • • • • •	
				3-3
• DABRAS U	JTILITIES :	DAILY Op CHEC	K - COUNTER 2	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
· Shift ship ships (Con)				
• 07/11/96 08:42:12		PARAMETERS		's Check
· STATE CONTRACTOR	ALPHA	BETA	ALPHA	BETA
· End Cat. Time Statistics			40.00	10.00
Bkgd Time (min)	100.00	100.00	10.00	10.00
Bkgd Cnts				2424
Bkga Circs	203	26087	13	2424
Bkgd Rate (cpm)	2.03	260.87	1.30	242.40
Bkgd Rate (cpm)	2.03	260.87 3.23	1.30	242.40 9.85
Bkgd Rate (cpm)	2.03 0.28 10.00	260.87 3.23 10.00	1.30 0.72 1.00	242.40 9.85 1.00
Bkgd Rate (cpm)Bkgd 2*Sig (± cpm)	2.03 0.28 10.00 176478	260.87 3.23 10.00 506531	1.30 0.72 1.00 16817	242.40 9.85 1.00 49888
 Bkgd Rate (cpm) Bkgd 2*Sig (± cpm) Std Cnt Time (min) 	2.03 0.28 10.00 176478 17647.80	260.87 3.23 10.00 506531 50653.10	1.30 0.72 1.00 16817 16817.00	242.40 9.85 1.00 49888 49888.00
Bkgd Rate (cpm) Bkgd 2*Sig (± cpm) Std Cnt Time (min) Std Cts	2.03 0.28 10.00 176478	260.87 3.23 10.00 506531	1.30 0.72 1.00 16817	242.40 9.85 1.00 49888

Hit "Q" Anytime to Abort

Hit "Q" Anytime to Abort

	m	DATIV ON CHEC	COUNTER 1	
DABRAS U	TILITIES :	DAILY Op CHEC		• • • • • • • • • • • • • • • • • • • •
08/06/96 07:51:34	CURRENT	PARAMETERS	Today	's Check
08/08/90 07.31.34	ALPHA	BETA	ALPHA	BET.
Bkgd Time (min)	100.00	100.00	10.00	10.0
Bkgd Cnts	170	26429	65	267
Bkgd Rate (cpm)	1.70	264.29	6.50	267.8
Bkgd 2*Sig (± cpm)	0.26	3.25	1.61	10.3
Std Cnt Time (min)	10.00	10.00	1.00	1.0
Std Cts	152339	494075	14406	4849
Std Rate (cpm)	15233.90	49407.50		48497.0
Std Net Rate (cpm)	15232.20	49143.21	14399.50	48229.2
Std Eff (cts/dis)	0.27	0.50	0.26	0.4
Hit				3-3
DABRAS I	JTILITIES :	DAILY Op CHEC	K - COUNTER 2	
DABRAS (JTILITIES :	DAILY Op CHEC	K - COUNTER 2	• 3-3 ••••
DABRAS I	JTILITIES :	DAILY Op CHEC	K - COUNTER 2	's Check
DABRAS 0	JTILITIES :	DAILY OP CHEC	K - COUNTER 2 Today ALPHA 10.00	· 3-3 's Check BET
DABRAS (08/06/96 08:05:15 Bkgd Time (min)	JTILITIES : CURRENT ALPHA	DAILY OP CHEC PARAMETERS BETA 100.00 26087	K - COUNTER 2 Today ALPHA 10.00 58	3-3 · · · · · · · · · · · · · · · · · ·
DABRAS (08/06/96 08:05:15 Bkgd Time (min) Bkgd Cnts	CURRENT ALPHA	DAILY OP CHEC PARAMETERS BETA 100.00 26087 260.87	K - COUNTER 2 Today ALPHA 10.00 58 5.80	3-3 · · · · · · · · · · · · · · · · · ·
DABRAS (08/06/96 08:05:15 Bkgd Time (min)	CURRENT ALPHA 100.00 203	DAILY OP CHEC PARAMETERS BETA 100.00 26087	K - COUNTER 2 Today ALPHA 10.00 58	3-3 · · · · · · · · · · · · · · · · · ·
DABRAS TO THE COMMON	CURRENT ALPHA 100.00 203 2.03 0.28	DAILY OP CHEC PARAMETERS BETA 100.00 26087 260.87	Today ALPHA 10.00 58 5.80 1.52	. 3-3 's Check BET 10.0 257 257.3 10.1
DABRAS TO THE CONTROL OF T	CURRENT ALPHA 100.00 203 2.03 0.28	PARAMETERS BETA 100.00 26087 260.87 3.23	Today ALPHA 10.00 58 5.80 1.52 1.00 17119	• 3-3 •••• 's Check BET 10.0 257 257.3 10.1 1.0 4951
DABRAS TO MADRAS	CURRENT ALPHA 100.00 203 2.03 0.28 10.00 176478	DAILY OP CHEC PARAMETERS BETA 100.00 26087 260.87 3.23	Today ALPHA 10.00 58 5.80 1.52 1.00 17119	. 3-3 's Check BET 10.0 257 257.3 10.1 1.0 4951 49513.0
DABRAS TO THE COMPANY OF T	CURRENT ALPHA 100.00 203 2.03 0.28 10.00 176478 17647.80	DAILY OP CHEC PARAMETERS BETA 100.00 26087 260.87 3.23 10.00 506531	Today ALPHA 10.00 58 5.80 1.52 1.00 17119 17119.00 17113.20	. 3-3 's Check BET 10.0 257 257.3 10.1 1.0 4951 49513.0 49255.7
DABRAS TO 08/06/96 08:05:15 Bkgd Time (min) Bkgd Cnts Bkgd Rate (cpm) Bkgd 2*Sig (± cpm) Std Cnt Time (min) Std Cts	CURRENT ALPHA 100.00 203 2.03 0.28 10.00 176478	DAILY OP CHECK PARAMETERS BETA 100.00 26087 260.87 3.23 10.00 506531 50653.10	Today ALPHA 10.00 58 5.80 1.52 1.00 17119	
DABRAS TO 08/06/96 08:05:15 Bkgd Time (min) Bkgd Cnts Bkgd Rate (cpm) Bkgd 2*Sig (± cpm) Std Cnt Time (min) Std Cts Std Rate (cpm) Std Net Rate (cpm) Std Eff (cts/dis)	CURRENT ALPHA 100.00 203 2.03 0.28 10.00 176478 17647.80 17645.77	DAILY OP CHEC PARAMETERS BETA 100.00 26087 260.87 3.23 10.00 506531 50653.10 50392.23 0.51	Today ALPHA 10.00 58 5.80 1.52 1.00 17119 17119.00 17113.20	. 3-3 's Check BET 10.0 257 257.3 10.1 1.0 4951 49513.0 49255.7

Hit "Q" Anytime to Abort

DABRAS UTILITIES : DAILY OD CHECK - COUNTER 1

CURRENT PARAMETERS

Today's Check

08/08/96 07:54:41

				. 3-3
• DABRAS U	TILITIES :	DAILY Op CHECK	K - COUNTER 1	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
· SEE MAR BARA LINES		DADAMEMED C	moday	's Check
• 08/12/96 07:46:54		PARAMETERS BETA	ALPHA	BETA
	ALPHA	DETA	ALIFIIA	DEIII
•	100.00	100.00	10.00	10.00
Bkgd Time (min)	170	26429	23	2589
Bkgd Cnts	1.70	264.29	2.30	258.90
Bkgd Rate (cpm)	0.26	3.25	0.96	10.18
Bkgd 2*Sig (± cpm)	0.26	3.25	0.90	10.10
	10.00	10.00	1.00	1.00
Std Cnt Time (min)		494075	14501	48870
• Std Cts	152339	49407.50		48870.00
	15233.90 15232.20	49407.30	14498.70	48611.10
• Std Net Rate (cpm)	0.27	0.50	0.26	0.49
• Std Eff (cts/dis)	0.27	0.50	0.20	0.45
Hit	UOU Ametimo	to Abort		
Hit	. "Q" Anytime			. 3-3
האחתה ו		DAILY Op CHEC		
		DAILI OF CHILE		
• 08/12/96 08:00:12	CURRENT	PARAMETERS	Today	's Check
08/12/96 08:00:12	ALPHA	BETA	ALPHA	BETA
	ADITIA			
Bkgd Time (min)	100.00	100.00	10.00	10.00
Bkgd Time (min) Bkgd Cnts	203	26087	28	2642
Bkgd Rate (cpm)	2.03	260.87	2.80	264.20
Bkgd Rate (Cpm) Bkgd 2*Sig (± cpm)	0.28	3.23	1.06	10.28
Bkgd 2*Sig (i Cpin)	0.20			
Std Cnt Time (min)	10.00	10.00	1.00	1.00
	176478	506531	17043	49858
Std CtsStd Rate (cpm)	17647.80	50653.10	17043.00	49858.00
	17645.77	50392.23	17040.20	49593.80
• Std Net Rate (cpm) • Std Eff (cts/dis)	0.32	0.51	0.31	0.50
• Sta EII (Cts/dis)	0.02			

Hit "Q" Anytime to Abort

...... Hit "O" Anytime to Abort

	December
Pa	
Page	10,
F-1	1996
13	9

08/19/96 07:48:25	CURRENT	PARAMETERS	Today	's Check
	ALPHA	BETA	ALPHA	BETA
Bkgd Time (min)	100.00	100.00	10.00	10.00
Bkgd Cnts	170	26429	17	2544
Bkgd Rate (cpm)	1.70	264.29	1.70	254.40
Bkgd 2*Sig (± cpm)	0.26	3.25	0.82	10.09
Std Cnt Time (min)	10.00	10.00	1.00	1.00
Std Cts	152339	494075	13792	48113
Std Rate (cpm)	15233.90	49407.50	13792.00	48113.00
Std Net Rate (cpm)	15232.20	49143.21	13790.30	47858.60
Std Eff (cts/dis)	0.27	0.50	0.25	0.48

···· Hit "Q" Anytime to Abort ····

DABRAS UTILITIES : DAILY Op CHECK - COUNTER 2

08/19/96 08:29:26	CURRENT	PARAMETERS	Today	's Check
	ALPHA	BETA	ALPHA	BETA
Bkgd Time (min)	100.00	100.00	10.00	10.00
Bkgd Cnts	203	26087	23	2493
Bkgd Rate (cpm)	2.03	260.87	2.30	249.30
Bkgd 2*Sig (± cpm)	0.28	3.23	0.96	9.99
Std Cnt Time (min) Std Cts Std Rate (cpm) Std Net Rate (cpm) Std Eff (cts/dis)	10.00	10.00	1.00	1.00
	176478	506531	14302	48782
	17647.80	50653.10	14302.00	48782.00
	17645.77	50392.23	14299.70	48532.70
	0.32	0.51	0.26	0.49

Hit "Q" Anytime to Abort

Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 170 26429 29 2523 Bkgd Rate (cpm) 1.70 264.29 2.90 252.30 Bkgd 2*Sig (± cpm) 0.26 3.25 1.08 10.05 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 15233.9 494075 13018 47905 Std Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15232.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.48 Hit "Q" Anytime to Abort Hit "Q" Anytime to Abort	DABRAS		DAILY Op CHEC	K - COUNTER 1	• 3-3 •••••
Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 170 26429 29 2523 Bkgd Rate (cpm) 1.70 264.29 2.90 252.30 Bkgd 2*Sig (± cpm) 0.26 3.25 1.08 10.05 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 152339 494075 13018 47905 Std Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15232.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.46 Hit "Q" Anytime to Abort Bkgd Time (min) 100.00 100.00 10.00 Bkgd Cnts 203 26087 3.1 261.30 Bkgd Time (min) 100.00 100.00 10.00 Bkgd Cnts 203 26087 3.1 261.30 Bkgd Time (min) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.22 Std Cnt Time (min) 10.00 10.00 1.00 Std Cnt Time (min) 10.00 10.00 10.00 1.00	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 170 26429 29 2523 Bkgd Rate (cpm) 1.70 264.29 2.90 252.30 Bkgd 2*Sig (± cpm) 0.26 3.25 1.08 10.05 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 152339 494075 13018 47905 Std Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15233.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.46 Hit "Q" Anytime to Abort Hit "Q" Anytime to Abort	08/20/96 07:46:58	CURRENT	PARAMETERS	Today	's Check
Bkgd Cnts		ALPHA	BETA	ALPHA	BETA
Bkgd Cnts	Bkad Time (min)	100.00	100.00	10.00	10.00
Bkgd Rate (cpm) 1.70 264.29 2.90 252.30 Bkgd 2*Sig (± cpm) 0.26 3.25 1.08 10.05 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 152339 494075 13018 47905 Std Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15232.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.48 Hit "Q" Anytime to Abort DABRAS UTILITIES : DAILY Op CHECK - COUNTER 2 08/20/96 08:03:22 CURRENT PARAMETERS Today's Check ALPHA BETA ALPHA BETA Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 203 26087 31 2613 Bkgd Rate (cpm) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.22 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 4789					2523
Bkgd 2*Sig (± cpm) 0.26 3.25 1.08 10.05 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 152339 494075 13018 47905 Std Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15232.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.48		1.70			252.30
Std Cts 152339 494075 13018 47905 Std Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15232.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.48 Hit "Q" Anytime to Abort DABRAS UTILITIES : DAILY OP CHECK - COUNTER 2 08/20/96 08:03:22 CURRENT PARAMETERS Today's Check ALPHA BETA ALPHA BETA Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 203 26087 31 261.3 Bkgd Rate (cpm) 2.03 260.87 3.10 261.3 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.22 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 4789		0.26	3.25	1.08	10.05
Std Cts 152339 494075 13018 47905 Std Rate (cpm) 15233.90 49407.50 13018.00 47905.00 Std Net Rate (cpm) 15232.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.48 Hit "Q" Anytime to Abort DABRAS UTILITIES : DAILY OP CHECK - COUNTER 2 08/20/96 08:03:22 CURRENT PARAMETERS Today's Check ALPHA BETA ALPHA BETA Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 203 26087 31 261.3 Bkgd Rate (cpm) 2.03 260.87 3.10 261.3 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.25 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 4789	Std Cnt Time (min)	10.00	10.00	1.00	1.00
Std Net Rate (cpm) 15232.20 49143.21 13015.10 47652.70 Std Eff (cts/dis) 0.27 0.50 0.23 0.48 15232.20 0.48 15232.20 0.50 0.23 0.48 15232.20 0.48 15232.20 0.50 0.23 0.48 15232.20 0.50 0.23 0.48 15232.20 0.50 0.23 0.48 15232.20 0.50 0.23 0.48 15232.20 0.50 0.50 0.23 0.48 15232.20 0.50 0.28 15232.2	Std Cts	152339	494075	13018	47905
Std Eff (cts/dis) 0.27 0.50 0.23 0.48 Hit "Q" Anytime to Abort DABRAS UTILITIES : DAILY OP CHECK - COUNTER 2 08/20/96 08:03:22 CURRENT PARAMETERS Today's Check ALPHA BETA ALPHA BETA Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 203 26087 31 261: Bkgd Rate (cpm) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.23 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 4789	Std Rate (cpm)	15233.90	49407.50	13018.00	47905.00
Hit "Q" Anytime to Abort DABRAS UTILITIES : DAILY Op CHECK - COUNTER 2 08/20/96 08:03:22	Std Net Rate (cpm)	15232.20	49143.21	13015.10	47652.70
DABRAS UTILITIES : DAILY OP CHECK - COUNTER 2 08/20/96 08:03:22	Std Eff (cts/dis)	0.27	0.50	0.23	0.48
DABRAS UTILITIES : DAILY OP CHECK - COUNTER 2 O8/20/96 08:03:22					
DABRAS UTILITIES : DAILY OP CHECK - COUNTER 2 08/20/96 08:03:22	Hit	t "O" Anytime	to Abort		
08/20/96 08:03:22					
08/20/96 08:03:22 CURRENT PARAMETERS Today's Check ALPHA BETA ALPHA BETA Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 203 26087 31 261: Bkgd Rate (cpm) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.22 Std Cnt Time (min) 10.00 10.00 1.00 Std Cts 176478 506531 14026 4789					
Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 203 26087 31 261: Bkgd Rate (cpm) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.22 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 4789			40707777		
Bkgd Time (min) 100.00 100.00 10.00 10.00 Bkgd Cnts 203 26087 31 2613 Bkgd Rate (cpm) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.23 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 47893	08/20/96 08:03:22	CURRENT	PARAMETERS		
Bkgd Cnts 203 26087 31 2613 Bkgd Rate (cpm) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.22 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 47893		ALPHA	BETA	ALPHA	BETA
Bkgd Cnts 203 26087 31 2613 Bkgd Rate (cpm) 2.03 260.87 3.10 261.30 Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.23 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 47893	Bkgd Time (min)	100.00	100.00	10.00	10.00
Bkgd 2*Sig (± cpm) 0.28 3.23 1.11 10.22 Std Cnt Time (min) 10.00 10.00 1.00 1.00 Std Cts 176478 506531 14026 4789	Bkgd Cnts			31	2613
Std Cnt Time (min) 10.00 10.00 1.00 1.00 1.00 Std Cts 176478 506531 14026 4789	Bkgd Rate (cpm)	2.03	260.87	3.10	261.30
Std Cts 176478 506531 14026 4789	Bkgd 2*Sig (± cpm)	0.28	3.23	1.11	10.22
Std Cts 176478 506531 14026 4789	Std Cnt Time (min)	10.00	10.00	1.00	1.00
Std Rate (cpm) 17647.80 50653.10 14026.00 47893.00	Std Cts			14026	47893
				4 4 4 4 4 4 4 4	
Std Net Rate (cpm) 17645.77 50392.23 14022.90 47631.70	Std Rate (cpm)	17647.80	50653.10	14026.00	47893.00
Std Eff (cts/dis) 0.32 0.51 0.25 0.46	Std Rate (cpm)				47893.00 47631.70

Hit "Q" Anytime to Abort

Certificate #015-D2 rev. 1.0, January 1996

INSTRUMENT MAINTENANCE/CALIBRATION CERTIFICATE

Set#: OS Procedure#: 015 Configuration: Surface Contam Type: X Dual Scintillator (dpm units) Unit#: 5491 Mfr/Model: NE Technology Electra S/N: 519 Unit#: 6816 Mfr/Model: NE Technology DP6A S/N: 591
Pulse Generator, Eberline MP- (, S/N 200 Electrostatic KiloVoltmeter: FSD , S/N 950556 Alpha Source: Am241 , S/N bv 457 , Activity 69,900 dpm Beta Source: Sv 460 , S/N bv 457 , Activity 122,000 dpm
I) MAINTENANCE/PRECALIBRATION: Window: OK Cabling: OK Mechanical/Cleanliness: ok Battery Voltage (Parameter # 0): 4.5 (ref: > 4) Threshold: 23 ~ (verify 25 mV with the MiniPulser) As the Electra "supervisor" set the Upper Level Discriminator (Parameter #6): 2.00 V (ref: 2.00 V), then INHIBIT: V Count Rate Check @ 10 k cpm: OK HV Calib.: OK (compare Parameter #3 w/ the Electrostatic)
High Voltage Adjustment: Using Sr-90 beta source, observe count rates in both alpha and beta channels. Adjust HV so that count rate in alpha channel is less than 0.1% of count rate in beta channel. Beta cpm: 35.4 K Alpha cpm: 14 (e.g., 0.04% of beta) HV = 725 V, and INHIBIT: V
Parameter Settings: As the Electra "supervisor" (i.e., the internal switch S1-2 to ON), set the remaining parameters as follows: Parameter #4 (Overload Current): 10 µA, then INHIBIT: Parameter #5 (Deadtime): 3 µsec, then INHIBIT: Parameter #8 (Units): cpm Parameter #A (inhibit bkgd subt): set to OFF Parameter #b (inhibit integrate): set to OFF Parameter #C (rate mode): set to preset Parameter #d (preset response time): set to 3 sec Parameter #E (pulse mode): set to dUAL Parameter #F (ohms): set to S66
Response to Alpha Std: Arthrope compared compare
Parameter #8 (Units): change from cpm to dpm Parameter #9 (Efficiencies): enter efficiencies from above Now set switch S1-2 back to OFF (user), and leave switch S1-3 set to ON (hide).
Calibrated by: Robet Name Date: 6/11/9(
Calibrated by.

Certificate #015-D2 rev. 1.0, January 1996

INSTRUMENT MAINTENANCE/CALIBRATION CERTIFICATE

Set#: //> Procedure#: 015 Configuration: Surface Contam Type: X Dual Scintillator (dpm units) Unit#: 5796 Mfr/Model: NE Technology Electra Unit#: 644 Mfr/Model: NE Technology DP6A S/N: //796
Pulse Generator, Eberline MP- / , S/N $\frac{5}{16}$ Electrostatic KiloVoltmeter: $\frac{6}{16}$ $\frac{2}{16}$ $\frac{2}{16}$, S/N $\frac{90947}{16}$ Alpha Source: $\frac{4}{16}$ $\frac{3}{16}$, S/N $\frac{9}{16}$ $\frac{9}{16}$ $\frac{9}{16}$ $\frac{9}{16}$ dpm Beta Source: $\frac{5}{16}$ $\frac{9}{16}$ $\frac{9}{$
I) MAINTENANCE/PRECALIBRATION: Window: Cabling: Mechanical/Cleanliness: Battery Voltage (Parameter # 0):/2
High Voltage Adjustment: Using Sr-90 beta source, observe count rates in both alpha and beta channels. Adjust HV so that count rate in alpha channel is less than 0.1% of count rate in beta channel. Beta cpm:
Parameter Settings: As the Electra "supervisor" (i.e., the internal switch S1-2 to ON), set the remaining parameters as follows: Parameter #4 (Overload Current): 10 µA, then INHIBIT: Parameter #5 (Deadtime): 3 µsec, then INHIBIT: Parameter #8 (Units): cpm Parameter #8 (inhibit bkgd subt): set to OFF Parameter #0 (inhibit integrate): set to OFF Parameter #C (rate mode): set to preset Parameter #d (preset response time): set to 3 sec Parameter #E (pulse mode): set to dUAL Parameter #F (ohms): set to S66
II) PRIMARY CALIBRATION: Response to Alpha Std: /// cpm; //97
Parameter #8 (Units): change from cpm to dpm Parameter #9 (Efficiencies): enter efficiencies from above Now set switch S1-2 back to OFF (user), and leave switch S1-3 set to ON (hide).
REMARKS:
Calibrated by: 4-18-96

Certificate #015-D2 rev. 1.0, January 1996

נ	Set#: /67/ Procedure#: 015 Configuration: Surface Contam Type: X Dual Scintillator (dpm units) Juit#: 10.75 Mfr/Model: NE Technology Electra S/N: 1935
	Unit#: 170 Mfr/Model: NR Technology DP6A S/N: 193 Pulse Generator, Eberline MP- / , S/N 545 Electrostatic KiloVoltmeter: 50-9 , S/N 65-12104 Alpha Source: 40,24/, S/N 07965 , Activity (10,000 dpm
1	I) MAINTENANCE/PRECALIBRATION: Window: Cabling: _X
	High Voltage Adjustment: Using Sr-90 beta source, observe count rates in both alpha and beta channels. Adjust HV so that count rate in alpha channel is less than 0.1% of count rate in beta channel. Beta cpm: 30.4/A Alpha cpm: 3/4 (e.g., <./% of beta) HV = 90.5/A, and INHIBIT: ×
	Parameter Settings: As the Electra "supervisor" (i.e., the internal switch S1-2 to ON), set the remaining parameters as follows: Parameter #4 (Overload Current): 10 µA, then INHIBIT: X Parameter #5 (Deadtime): 3 µsec, then INHIBIT: X Parameter #8 (Units): cpm Parameter #A (inhibit bkgd subt): set to OFF Parameter #b (inhibit integrate): set to OFF Parameter #C (rate mode): set to preset Parameter #d (preset response time): set to 3 sec Parameter #E (pulse mode): set to dUAL Parameter #F (ohms): set to S66
	II) PRIMARY CALIBRATION: Response to Alpha Std: //k cpm; /70 % efficiency (alpha) Alpha Mode Bkgd: 2 cpm (ref.: < 7 cpm) Response to Beta Std: 30.4 cpm; / % efficiency (beta) Beta Mode Bkgd: 50.4 cpm (ref.: < 400 cpm) Integrate Check: Audible Functional Check: X
	Parameter #8 (Units): change from cpm to dpm Parameter #9 (Efficiencies): enter efficiencies from above Now set switch S1-2 back to OFF (user), and leave switch S1-3 set to ON (hide).
	Calibrated by: Date: 2-26-9
	Calibrated by: Date: 2-26-9

Certificate #015-D2 rev. 1.0, January 1996

Set#: 39 Procedure#: 015 Configuration: Surface Contam Type: X Dual Scintillator (dpm units) Unit#: 5777 Mfr/Model: NE Technology Electra S/N: 5/6 Unit#: 6907 Mfr/Model: NE Technology DP6A S/N: 5747
Pulse Generator, Eberline MP- / , S/N 5% Electrostatic KiloVoltmeter: ESO 2k , S/N 200/4; Alpha Source: 4n,14 , S/N 0/ 405 , Activity 60,000 dpm Beta Source: 5r/90 , S/N 0/ 636 , Activity 97,000 dpm
I) MAINTENANCE/PRECALIBRATION: Window: Cabling: Mechanical/Cleanliness: Mechan
High Voltage Adjustment: Using Sr-90 beta source, observe count rates in both alpha and beta channels. Adjust HV so that count rate in alpha channel is less than 0.1% of count rate in beta channel. Beta cpm: 272K Alpha cpm: // (e.g., // % of beta) HV = 990 , and INHIBIT: //
Parameter Settings: As the Electra "supervisor" (i.e., the internal switch S1-2 to ON), set the remaining parameters as follows: Parameter #4 (Overload Current): 10 μ A, then INHIBIT: Parameter #5 (Deadtime): 3 μ sec, then INHIBIT: Parameter #8 (Units): cpm Parameter #A (inhibit bkgd subt): set to OFF Parameter #b (inhibit integrate): set to OFF Parameter #C (rate mode): set to preset Parameter #d (preset response time): set to 3 sec Parameter #E (pulse mode): set to dUAL Parameter #F (ohms): set to S66
II) PRIMARY CALIBRATION: Response to Alpha Std: 12.2 kcpm; 250 % efficiency (alpha) Alpha Mode Bkgd: cpm (ref.: < 7 cpm) Response to Beta Std: 27.3 kcpm; 279 % efficiency (beta) Beta Mode Bkgd: 60 cpm (ref.: < 400 cpm) Integrate Check: Audible Functional Check:
Parameter #8 (Units): change from cpm to dpm Parameter #9 (Efficiencies): enter efficiencies from above Now set switch S1-2 back to OFF (user), and leave switch S1-3 set to ON (hide).
REMARKS:
Calibrated by: Jail Date: 5.1-96

Certificate #015-D2 rev. 1.0, January 1996

	Set#: 96 C Procedure#: 015 Configuration: Surface Contam Type: X Dual Scintillator (dpm units) Unit#: 539 Mfr/Model: NE Technology Electra S/N: 989 Unit#: 669 Mfr/Model: NE Technology DP6A S/N: 1049
	Pulse Generator, Eberline MP- / , S/N 595 Electrostatic KiloVoltmeter: ES) 2K , S/N 90047 Alpha Source: A 24/ , S/N 60800 , Activity 0v 965 dpm Beta Source: S/90 , S/N 97800 , Activity 0v 636 dpm
	I) MAINTENANCE/PRECALIBRATION: Window: X Cabling: X Mechanical/Cleanliness: X Battery Voltage (Parameter # 0): 4// (ref: > 4) Threshold: 3// (verify 25 mV with the MiniPulser) As the Electra "supervisor" set the Upper Level Discriminator (Parameter #6): 2// V (ref: 2.00 V), then INHIBIT: Count Rate Check @ 10 k cpm: 10// HV Calib.: X (compare Parameter #3 w/ the Electrostatic)
	High Voltage Adjustment: Using Sr-90 beta source, observe count rates in both alpha and beta channels. Adjust HV so that count rate in alpha channel is less than 0.1% of count rate in beta channel. Beta cpm: 30.7 Alpha cpm: 33 (e.g., 4/% of beta) HV = 1000 , and INHIBIT: 4
	Parameter Settings: As the Electra "supervisor" (i.e., the internal switch S1-2 to ON), set the remaining parameters as follows: Parameter #4 (Overload Current): 10 µA, then INHIBIT: Parameter #5 (Deadtime): 3 µsec, then INHIBIT: Parameter #8 (Units): cpm Parameter #A (inhibit bkgd subt): set to OFF Parameter #b (inhibit integrate): set to OFF Parameter #C (rate mode): set to preset Parameter #d (preset response time): set to 3 sec Parameter #E (pulse mode): set to dUAL Parameter #F (ohms): set to S66
L	II) PRIMARY CALIBRATION: Response to Alpha Std: /// Cpm; /82
	Parameter #8 (Units): change from cpm to dpm Parameter #9 (Efficiencies): enter efficiencies from above Now set switch S1-2 back to OFF (user), and leave switch S1-3 set to ON (hide).
	REMARKS:
	Calibrated by: Fille Date: 3-25-96

Certificate #015-D2 rev. 1.0, January 1996

Set#: /C// Procedure#: 015 Configuration: Surface Contam Type: X Dual Scintillator (dpm units) Unit#: 5//5 Mfr/Model: NE Technology Electra S/N: 526 Unit#: (XX) Mfr/Model: NE Technology DP6A S/N: 75
Pulse Generator, Eberline MP- / , S/N 5/C Electrostatic KiloVoltmeter: SA-8 , S/N 6/-/736 Alpha Source: And Alpha Source: S/N 6/C , Activity 6870 dpm Beta Source: S/N 6/C , S/N 6/C , Activity 97800 dpm
I) MAINTENANCE/PRECALIBRATION: Window: Cabling: Mechanical/Cleanliness: Battery Voltage (Parameter # 0): 9/ (ref: > 4) Threshold: (verify 25 mV with the MiniPulser) As the Electra "supervisor" set the Upper Level Discriminator (Parameter #6): 2 V (ref: 2.00 V), then INHIBIT: Count Rate Check @ 10 k cpm: HV Calib.: (compare Parameter #3 w/ the Electrostatic)
High Voltage Adjustment: Using Sr-90 beta source, observe count rates in both alpha and beta channels. Adjust HV so that count rate in alpha channel is less than 0.1% of count rate in beta channel. Beta cpm: 29.3 K Alpha cpm: 8 (e.g., 4.0% of beta) HV = 800 , and INHIBIT:
Parameter Settings: As the Electra "supervisor" (i.e., the internal switch S1-2 to ON), set the remaining parameters as follows: Parameter #4 (Overload Current): 10 \(\mu \text{A} \), then INHIBIT: Parameter #5 (Deadtime): 3 \(\mu \text{sec} \), then INHIBIT: Parameter #8 (Units): cpm Parameter #A (inhibit bkgd subt): set to OFF Parameter #A (inhibit integrate): set to OFF Parameter #C (rate mode): set to preset Parameter #d (preset response time): set to 3 sec Parameter #E (pulse mode): set to dUAL Parameter #F (ohms): set to S66
II) PRIMARY CALIBRATION: Response to Alpha Std: 15 cpm; - 15 * efficiency (alpha) Alpha Mode Bkgd: 7 cpm (ref.: < 7 cpm) Response to Beta Std: 29.3 (cpm; 39.4 * efficiency (beta) Beta Mode Bkgd: 37/ cpm (ref.: < 400 cpm) Integrate Check: Audible Functional Check:
Parameter #8 (Units): change from cpm to dpm Parameter #9 (Efficiencies): enter efficiencies from above Now set switch S1-2 back to OFF (user), and leave switch S1-3 set to ON (hide).
REMARKS:
Calibrated by: Date: 6-296

Certificate #018-A1 rev. 1.0, June 1993

Set#: <u>64/</u> Type: _ X _ 2	Procedure	#: 018 Co	onfiguratio	on: Scintillator	
Unit#:50% Unit#:76/5	Mfr/Model Mfr/Model	: Eberline : Eberline	PRM-5-3 PG-2	s/n: <u>30/2</u> s/n:	
Pulse Gener Electrostat Source(s):	cator, Eber cic KiloVol Pu-239 ,S Am-241 ,S U-235 ,S	line MP tmeter: 5/N 7552 5/N 7551 5/N 22B6102	/ , S/N ESD-9 , Activit , Activit , Activit	, S/N <u>e</u> y 4150000 dpm y 6028000 dpm y 1.06 g foil	5-12104
I) MAINTEN	ANCE/PRECAL	IBRATION:			
Batteries:	× Cabl	ing:_×	Mechanica	1/Cleanliness:	
Threshold: Window: Audible Fu	nction Chec	fixed at 5 graphs (ref	.: 25% of	Threshold mV) 3-/-96 Date	
II) PRIMAR	Y CALIBRAT	ION:			
Range (cpm)	Pulser Rate (cpm)	As Found (cpm)	Left (cpm)	% Diff. Pulser vs As Left	
5K	YK	48	YK	CO M	
sok	46K 400K	YOK	447K	79	
isotope of	n, adjust	Respor As Found F (cpm)	nse As Left (cpm)	Efficiency (If Applicable) (%)	
HV- 1 HV- 2	Pu-239 Am-241	15K Acok	15K 400K	N/A N/A	
HV- 2 HV- 3	U-235	135K	300K	N/A	
		1 000		pm (ref.: > 300	cpm)
			2035568		
	Primary-	Calibrator		<u> </u>	

Certificate #016-A4 rev. 0.0, March 1994

INSTRUMENT MAINTENANCE/CALIBRATION CERTIFICATE

Set#. 366

Set#: $\frac{\mathcal{SU}}{\mathbf{X}}$ Procedure#: 016 Configuration: GM Field Type: \mathbf{X} Energy Compensated
Unit#:4786 Mfr/Model: Ludlum 3 S/N: 279d7 Unit#:2017 Mfr/Model: Eberline HP-270 S/N: 279d7
Pulse Generator, Eberline MP- 2, S/N 775 Electrostatic KiloVoltmeter: 50 9, S/N 7083
I) MAINTENANCE/PRECALIBRATION:
Batteries: Cabling: Mechanical/Handle: Meter Zero: Cleanliness:
Threshold: mV (fixed @ approx. 30 to 50 mV) High Voltage: 900 vdc (ref.: 900 v) Audible Function Check:
(Pre-galibrato) 12996 Date
II) PRIMARY CALIBRATION (Linear Scales):
*****Mid-Field***
(0 to 2 mR/h)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Off-Scale Response?: Off (field should be about 400 mR/h)
REMARKS:
Primary-Calibrator Date

Certificate #017-A1 rev. 1.0, August 1993

Set#: 665 Procedure#: 017 Type: _X_ Ionization Chamber	Configuration: Ion Field
Unit#: 5:11 Mfr/Model: Eberline	RO-20 S/N: 287
Gamma Source Cs 137	,s/N_7083
i) MAINTENANCE/PRECALIBRATION:	
Mechanical: V Clean Meter Batteries: Supply 7 ; Chambe	
Robert Hum	6-4-94 Date
Pre-Calibrator	Date
II) PRIMARY CALIBRATION (Linea:	r Scales):
*****Mid-Field***** Range Field As As Found Left	**Low-Field*** **High-Field** Field Response Field Response
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,0 1,0 1,0 8 8 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
	9, a 9,5 4,12 4,1 9, a 9,5 36,2 35
Off-Scale Response?: (fiel	d should be about 100 R/h)
Integrate Mode - N/A	
Conditions: Pressure 746 mm H	g ; Temperature 680
REMARKS:	
Helly	6-5-96
Primary-Calibrator	Date

NE Instrument Operational Check Log

Building 3/0			Location ,	015/410	Retention Tank
SOURCE # Martle		MINIMUM	a 1.7K	BY 32K	
		MAXIMUM	a 4.3 K	BY 42K	
INSTRUMENT SET #	DATE	A PASS	BG PASS	INITIALS	COMMENTS
1051	7-9-94	/	1	18	
1258	7-9-96	_	-	occ	
1687	7-9-96	-	-	JC 6	
1682	7-10-96	-	-	∞6	
105)	7-10-96	-	-	C6	
1259	7-11-96	V	~	76	
1259	7-12-96	r	r	AU	
960	7-12-96	-	-	DCE	
1682	7-12-56	-	-	DCG	
1687	7-15-96	. ~	-	DC 6	
1482	7-16-96	V	-	DCC	
1482	7-17-96	~	-	DC 6	
1682	7-19-86	-	_	DCE	
1642	7-22-96	_	_	DCP	
1682	7-23-96		_	006	
1259	8-5-96	~		TB	70/
1641	8-6-96	-	V	TB	37.6 d 850 B
1682	8-7-96	V	V	tes	
1051	8-7-96	v	/	Des	73
1051	8-13-94	/	-	TB	1125 BY
32/10 4 4					
		A. 183			
				Achie and	

PRM 5-3 Operational Check Log

Building 310		Tank Rom		
SOURCE # Months	MINIMUM 7000		cts/min	
	MAXIMUM	12000	cts/min	
INSTRUMENT SET #	DATE	PASS/READING	INITIALS	COMMENTS
641	7-10-96	8001	Dec	
641		~ 8000		
		~ 8m		
641 960	7-22-96	/	YB.	
		Variation of the same		
		Janes Williams		
		-		
Carlos and Carlos and Carlos				
				-
	and the same of the same of			
	-			
-				
				i i
				S S Designation of the last of

54 d

Judlum Model 3
GM Sad Window Operational Check Log

Location Rentent Building 310 SOURCE # MINIMUM 12 mR/Hr **MAXIMUM** mR/Hr 16 DATE **INSTRUMENT SET #** PASS/READING INITIALS COMMENTS 8/1/96 366 006

RO20 (Shield Closed)

Bly.310		Letente	m T	anh K	-
SOURCE#		MINIMUM	2.8	mR/Hr	
		MAXIMUM	3.9	mR/Hr	
	-	TO CHILDREN	5.7	THIOTH.	
ERIAL NUMBER	DATE	READING	PASS	INITIALS	COMMENTS
665	7/10	INDADINO	-	DAC	COMMENTS
665	2/10			000	
665	7/11			DC6 DC6	
665	7/12			DC6	
		-			
				-	
				-	
		0.1			
			1000000		
Replace Control					
				-	
			19/10/39/3		
	1				ACCOUNT OF THE PARTY OF THE PAR

Distribution for ANL/ESH-HP-96/04

Internal

N.L. Contos (ESH-HP)
D.C. Geraghty (ESH-HP)
M.R. O'Connor (ESH-HP)
D.W. Reilly (ESH-HP)
M.J. Robinet (ESH-HP)
C.M. Sholeen (ESH-HP)
HP Office - 13 copies (ESH)
C. Grandy (EMO)
J. Johnson (EMO)
D.C. Pancake (EMO)
L. Bora (RE)
R.H. Gebner (RE)
T. Yule (TD)
R.W. Rose (TD) - 9 copies
TIS File (203)

External

DOE-OSTI (2) ANL-E Library (Bldg 203) ANL-W Library (J. Krieger IS/AW - 752) DOE CH Operations Office

